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Chapter 1

Introduction

1.1 Overview

WP1 deals with the deployment of formal engineering methods (Event-B) in
the Automotive Sector. The work package is lead by Robert Bosch GmbH
in close cooperation with the following partners:

• Åbo Akademi

• University of Newcastle

• University of Southampton

• ETH Zürich

• CETIC

Our main objective in WP1 is threefold: (i) the deployment and detailed
assessment of formal engineering methods in the context of automotive sys-
tem development, (ii) the development of a methodology that is specific and
applicable for automotive systems, (iii) the development of concepts for adap-
tation of our development process in order to efficiently use the methodology.
Our objectives in detail are:

• Provide evidence that refinement-based formal engineering methods are
applicable to Bosch systems. The key priorities for Bosch are:

– Structured development of system requirements and systematic
construction and validation of formal models from requirements

– Effective reuse and evolution of formal models and analysis
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6 CHAPTER 1. INTRODUCTION

– Provide evidence of the applicability of formal methods to the
development of automotive systems

• Develop a specific methodology for automotive systems and provide
evidence for applicability by close-to-production implementation of rel-
evant parts of the pilot application

• Identify changes to the current development process as well as concepts
for assimilation

In order to achieve these objectives, the following deployment strategy
has been pursued:

• Minipilot: The minipilot is a small Event-B model, focused on specific
aspects (in the case of WP1, modelling of continuous behaviour and
time)

• Pilot: The goal of the pilot is to develop a specific methodology for
automotive systems including an industrial process for formal devel-
opment (necessary for large scale deployment) as well as to provide
evidences for sector acceptance (by developing a close-to-production
implementation of relevant parts of the cruise control system)

• Enhanced deployment: The enhanced deployment will result in the
application of the methodology in the context of other domains having
different characteristics (e.g. air system of the engine control).

The purpose of this deliverable is to provide a description of the pilot,
the pilot deployment strategy, the technical steps undertaken, and especially
the results of the pilot deployment including evidence, feedback to methods
and tools as well as an outline of future work towards full deployment.

1.2 Outline

The remainder of this deliverable is structured as follows: Chapter 2 gives
an overview of the pilot application, namely the cruise control system, and
describes its main functions. In Chapter 3 we explain the overall strategy
for pilot deployment. Chapter 4 describes the technical steps undertaken for
pilot deployment and Chapter 5 presents the results of the pilot deployment
including evidence, feedback to methods and tools. Chapter 6 reports on
open research issues for deployment of formal methods in the automotive
sector. This deliverable is concluded by Chapter 7. Chapters 1-5 and Chapter
7 have been written by the deployment partner (Bosch). Chapter 6 has been
written by the University of Newcastle.



Chapter 2

Pilot Description

2.1 Overview

For pilot deployment within WP1 we have chosen the cruise control system,
an automotive system implemented in software which automatically controls
the speed of a car. The cruise control system is part of the engine control
software which controls actuators of the engine (e.g. injectors, fuel pumps,
throttle valve, fuel pumps) based on the values of specific sensors (e.g. gas
pedal position sensor, airflow sensor, lambda sensor).

Since the cruise control system automatically controls the speed of a
car there are some safety aspects to be considered and it needs to fulfill a
number of safety properties. For example, the cruise control system must be
deactivated upon request of the driver or in case of a system fault.

In the following we briefly describe the main functionality of the cruise
control system as well as the subsystem signal evaluation which has been
selected for a detailed description in the pilot deployment report. It is im-
portant to note that we are focusing on the software part of the cruise control
system for pilot deployment. The environment of the cruise control software,
i.e., the engine control software, the sensors, the actuators, and the control
interface are external to the cruise control software we want to develop for-
mally. However, as the requirements of the cruise control system are stated
in terms of aspects of the environment we still need to model the environment
in our pilot deployment in order to verify and validate the requirements.
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8 CHAPTER 2. PILOT DESCRIPTION

2.2 Functionality

2.2.1 System Modes

Essentially, the cruise control system can be in one of the following three
modes.

1. NO CONTROL: In this mode the cruise control is not controlling
the vehicle speed. The vehicle speed is only controlled by the driver
using the accelerator pedal. Based on the position of the accelerator
pedal the engine control software calculates the required amount of fuel
being injected into the combustion chamber. Due to the combustion of
fuel, the engine is moving and provides a physical torque which directly
influences the speed of the vehicle.

2. CONTROL: In this mode the cruise control system actively controls
the vehicle speed. It is either maintaining a target speed defined by
the driver or approaching a previously set target speed from above or
from below.

3. ACONTROL: In this mode the cruise control system is either acceler-
ating or decelerating the car with a predefined acceleration/deceleration.

The behaviour of the cruise control system is only determined by the
three modes defined above. For the CONTROL and ACONTROL modes
the cruise control system provides control algorithms designed by control
engineers which control the acceleration demand of the cruise control system
on the vehicle. The engine control software converts this acceleration demand
into physical engine parameters (e.g. amount of fuel, injection parameters,
amount of air) which will cause the engine to provide a physical torque.
This torque is then converted by the powertrain of the car into a physical
acceleration of the car.

The modes described above can be switched by the driver using the control
interface or by the control software in case the control software detects an
error. In this case the mode is always switched to NO CONTROL.

2.2.2 Control Interface

There are two ways of a driver to control the behaviour of the cruise control
system: (i) using the pedals to (temporarily) deactivate the cruise control
system, and (ii) using the control elements provided by the operating lever.
The control elements provided by the operating lever may vary slightly be-
tween car manufacturers. However, the functions that can be controlled using
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the control elements of the operating lever (e.g. switching cruise control on
or off, setting a target speed, resuming a previously set target speed, increas-
ing/decreasing the target speed, and accelerating/decelerating) are always
the same.

Using the pedals, the driver can influence the behaviour of the cruise
control system in the following ways:

• Brake Pedal / Clutch Pedal: If the driver presses the brake or
clutch pedal, the cruise control system is deactivated (NO CONTROL
mode) if it has been active before (CONTROL or ACONTROL mode).

• Accelerator Pedal: If the driver presse the accelerator pedal, the
cruise control system is temporarly deactivated (NO CONTROL mode)
if it has been active before (CONTROL or ACONTROL mode). In this
case the vehicle speed is controlled by the accelerator pedal position
only. As soon as the driver releases the accelerator pedal, the cruise
control system resumes the previously set target speed (CONTROL
mode).

The basic cruise control operating lever provides an on/off button or
switch, a set button, a resume button, a tip-up and tip-down button, and
buttons to accelerate or decelerate manually.

• ON/OFF: The ON/OFF button or switch is used to switch the cruise
control system to STANDBY or OFF, respectively. STANDBY and
OFF are substates of the NO CONTROL mode. As soon as the cruise
control system is switched to STANDBY, it is ready to accept inputs
from the control elements and pedals in order to influence the behaviour
of the vehicle accordingly. Otherwise, the interaction of the driver with
the control elements will be ignored. It is important to note that the
ON/OFF button/switch does not change the cruise control mode from
NO CONTROL to CONTROL.

• SET: Pressing the set button results in the cruise control system sav-
ing the current vehicle speed as the target speed and switching mode
to CONTROL if the system has been in NO CONTROL mode. The
defined target speed is maintained as long as possible and desired by
the driver.

• RESUME: If the driver presses the resume button, the vehicle will
accelerate or decelerate to a previously set target speed. In case there
is no target speed set, the current vehicle speed will be taken as target
speed and maintained. Pressing the resume button results in a switch
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to the CONTROL mode if the current mode is NO CONTROL and
the cruise control has been switched ON before.

• TIP-UP/TIP-DOWN: If the tip-up or tip-down button is pressed,
the target speed is increased respectively decreased by a predefined
value. Pressing TIP-UP or TIP-DOWN does not influence the mode
of the cruise control system.

• ACC/DEC: The driver may also manually accelerate or decelerate the
car within certain limits using the ACC or DEC button, respectively.
The cruise control system will switch to mode ACONTROL and remain
in this mode until the ACC or DEC button is released or an error is
detected.

Depending on the car manufacturer the operating lever may not provide
all of the buttons/switches above. In this case the operating lever provides a
reduced number of buttons. The corresponding cruise control function (e.g.
SET, TIP-UP) is determined based on the button presses and the current
mode and/or state of the cruise control system.

2.3 Signal Evaluation Subsystem

For the pilot deployment report we selected the signal evaluation subsystem.
Besides the signal evaluation subsystem, the cruise control system consists
of the velocity control subsystem which calculates an acceleration demand
based on the current vehicle speed and the stored target speed and the dis-
play subsystem which is responsible for displaying the status of the cruise
control system to the driver and to other control units. The signal evalu-
ation subsystem is responsible for evaluating the signals generated by the
control elements of the operating lever and by the pedals. Based on the
evaluation of the signals the signal evaluation subsystem changes the inter-
nal state of the cruise control system and sets or deletes the target speed.
Contrary to the velocity control subsystem the signal evaluation subsystem
only consists of discrete behaviour and thus is especially amenable for formal
modelling with Event-B.

As there exists a large number of operating lever variants we decided to
choose one operating lever variant for pilot deployment which only provides
the following control elements:

• ON/OFF Switch: The ON/OFF switch can be used to switch the cruise
control system ON or OFF.
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• SET / TIP-DOWN / DEC Button: When this button is pressed the
cruise control system needs to determine whether to execute SET or
TIP-DOWN based on the current state. The DEC function is being
activated if the button is hold for a certain time.

• RESUME / TIP-UP / ACC Button: When this button is pressed the
cruise control system needs to determine whether to execute RESUME
or TIP-UP based on the current state. The ACC function is being
activated if the button is hold for a certain time.

As the number of functions to be distinguished is higher than the num-
ber of provided buttons, it is obvious that signals generated by the control
elements need to disambiguated in order to identify the function requested
by the driver. This disambiguation is done in two separate steps:

1. Disambiguation by the low-level hardware driver: The hardware driver
is able to disambiguate single button presses from holding a specific
button. Thus the ACC and DEC functions can be disambiguated.

2. Disambiguation by the signal evaluation subsystem: The signal evalu-
ation subsystem of the cruise control disambiguates signals generated
by the low-level hardware driver based on the internal cruise control
state.

The signal evaluation subsystem distinguishes between the following in-
ternal states of the cruise control system:

As shown in Table 2.1, for each mode there exists a number of different
states which record the history of input signals which have been evaluated. It
is important to note that state transitions within one of the three modes do
not change the external behaviour of the cruise control. For example, if the
cruise control transitions from state OFF to state STANDBY the invariant
of the NO CONTROL mode still holds. This means, that the vehicle speed
is still only controlled by the accelerator pedal position. If the cruise control
transitions from the state STANDBY to the state CRUISE which indirectly
also involves switching modes from NO CONTROL to CONTROL, then the
externally visible behaviour of the cruise control is changing, i.e., after the
state switch the vehicle speed is controlled by the cruise control and not
anymore by the accelerator pedal position.
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Mode State Description

NO CONTROL

UBAT OFF Ignition is off and engine not running
INIT Ignition is ON and cruise control is be-

ing intialized
OFF Ignition is ON, cruise control has been

initialized and is switched OFF
ERROR An irreversible error has occurred
STANDBY Cruise control has been switched ON
R ERROR A reversible error has occurred

CONTROL
CRUISE Cruise control is maintaining the target

speed
RESUME The target speed is approached from

above or from below

ACONTROL
ACC Cruise control is accelerating the car
DEC Cruise control is decelerating the car
RAMP DOWN Cruise control is being switched off

Table 2.1: Modes and states of the cruise control system.



Chapter 3

Pilot Deployment Strategy

3.1 Overview

Increasing comfort-, emission-, and safety requirements for future motor ve-
hicles are leading to an increasing number of powerful and complex systems
within a car. Currently interrelations have tightened between previously in-
dependent domains inside a vehicle. Therefore, reliability and safety of our
overall systems are essential and have to meet highest standards. Depend-
ability for Bosch means the absence of errors in all operating points as well
as controlled behaviour in the presence of partial failures. Today, systematic
testing is used to achieve dependability of our systems. However, the increase
in system complexity means that the effort of systematic testing will grow
exponentially and, hence, will become uneconomical. In order to face these
challenges, we are convinced that dependability of our future systems can be
ensured only by using formal engineering methods (quality by design). In
WP1, we will deploy formal methods on the engineering of a cruise control
system. A cruise control system is not the first target product for which
formal methods are needed (A cruise control system is well know and was
and is succesfull developed with traditional methods), but development of a
cruise control system includes all technical challenges (i.e. a complex user
interaction, variants, real time requirements, closed loop controller, ..) we
have to deal with. Because of that a cruise control is an ideal pilot to learn
how to develop a system with Event-B.

3.2 Development process with Event-B

System development with Event-B is quite a big change in the development
process. Hence the strategy of introducing it should make transition from
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the current development process to the new process as easy as possible. The
used strategy is a cascade deployment starting from the requirements and
going through the development life cycle to target code.

Figure 3.1: Overall development process.

In Figure 3.1 the embedding of the system development with Event-B
in the overall development process is shown. In the beginning requirements
engineering is done (see Section 4.2). The result of this process step is a re-
quirements document usually in more or less natural language. Parallel to the
requirements engineering process a hazard analysis is performed (see Section
4.4). Both process steps are not part of the WP1. In our pilot deployment
we are basically using the results of these process steps (with some aditonal
work done concerning the hazard analysis). Ideally the requirements engi-
neering process produces functional requirements which are later transformed
into events and the hazard anaylsis produces safety requirements which are
transformed into invariants in the Event-B model.

Systems in the automotive industry are usually embedded real time ap-
plications which contain a closed loop controller as an essential part. The
development of the closed loop controller is done by control engineers. Verify-
ing closed loop controllers requires reasoning about continuous time behavior
and this is not supported by Event-B. Therefore, we do not try to include
detailed models of closed loop controllers Event-B. However, we do model the
discrete part of the system in Event-B. The suggested development process
thus is a parallel development of the discrete part of the system in Event-
B and a development of the closed loop controllers with their well known
methods and tools.
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The open question at the moment is to which detail assumptions about
the closed loop controllers must/should be included in the Event-B model.

The synthesis of the two development processes will be done on target
code level (probably with one or more iterations). In a traditional valida-
tion process it has to be shown that the assumptions about the closed loop
controllers we have inlcuded in the Event-B model are valid.

Figure 3.2: The deployment approach of WP1.

In Figure 3.2 the parts of the development process are shown which are
of most interest in WP1. As already described above, the starting point is
a requirements engineering phase (see Section 4.2). The result of this pro-
cess step is a document in natural language which describes the functional
requirements of the system. From the experiences we gained during the first
two years, the gap between a usual requirements document and a Event-B
model is huge. The problem of this gap is that you have to validate (with
e.g. reviews) that the Event-B model is a correct model of the stated require-
ments. To overcome this problem we decided to introduce a pre or semifor-
mal step in the requirements engineering process (for a detailed description
see Section 4.3). We have chosen the Problem Frames method [Jac01] for
this purpose. As described in the following chapters we extended the ex-
sisting Problem Frame approach with the notion of hierarchy and refinment
and will call them in the following extended Problem Frames. These exten-
sions support the translation of an Problem Frame model in Event-B (see
Section 4.5). Without the introduction of the extended Problem Frames ap-
proach we would have a problem in order to validate whether the Event-B
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model is the correct model of the requirements. With the introduction of the
Problem Frames approach we have two simpler validation problems: the first
one is to validate whether the Problem Frames model is correct with respect
to the requirments document and the second one is to validate whether the
Event-B model is correct with respect to the Problem Frames model. From
our point of view these two validation problems are easier to solve than the
big one.

Besides the fact that in the graphical presentation of the development
process only arcs in one direction are shown it is obvious that there are some
iterations included in a real development process.



Chapter 4

Pilot Deployment

4.1 Overview

In this chapter we present a description of the pilot deployment, i.e., the mod-
elling of the cruise control system in Problem Frames and Event-B. For each
activity defined in Chapter 3, we describe the technical steps we performed.

The remainder of this chapter is structured as follows: Section 4.2 gives
an overview of the starting point for pilot deyploment and describes the infor-
mal requirements specification as well as its weaknesses with regard to formal
modelling. Section 4.3 presents the technical steps undertaken for deriving a
semi-formal requirements specification of the informal requirements includ-
ing the restructuring of the requirements. In Section 4.4, we describe our
process of deriving safety requirements using a hazard analysis. We conclude
this chapter by describing the technical steps for translating the semi-formal
requirements specification into a formal specification in Event-B in Section
4.5.

The application of the technical steps described in Section 4.3 and Section
4.5 to parts of the cruise control system (signal evaluation) are described in
Appendix A and Appendix B.

4.2 Informal Requirements Specification

The starting point for pilot deployment was an informal requirements speci-
fication of the cruise control system in natural language. We soon found out
that the gap between the informal requirements specification and a formal
model in Event-B is very large which makes it quite hard to validate whether
the formal model in Event-B correctly fulfills the requirements stated in
the informal requirements specification. Therefore we decided to introduce

17
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an additional phase between the informal requirements specification and the
formal modelling which is called semi-formal requirements engineering. Thus
we are able to break the validation into two smaller steps. In the first step
we have to validate whether the requirements stated in the semi-formal re-
quirements specification fulfill the requirements in the informal requriement
specification. In the second step we have to validate whether the formal
model meets the requirements stated in the semi-formal requirements spec-
ification. The details of the semi-formal requirements engineering phase are
described in Section 4.3.

4.3 Semi-formal Requirements Specification

The purpose of the semi-formal requirements specification is to describe the
informal requirements of the cruise control system in a semi-formal way such
that they can be easily modelled with Event-B.

During pilot deployment we decided to use the Problem Frames approach
[Jac95, Jac01] and several extensions we developed for semi-formal require-
ments engineering because it allows to structure the problem into require-
ments, machine, and the physical world. Furthermore, the problem frames
approach and our extensions allows us to decompose a given problem, e.g.,
the development of a cruise control system, into different subproblems which
can be handled separately and later recombined in a subsequent phase. The
development task in problem frames is to design a machine by building soft-
ware that is then executed on a general-purpose computer, specialising the
computer to serve a particular purpose [Jac95]. That purpose is to meet
a recognised need, which is called requirement. Satisfying the requirement
involves transforming the physical world around us. In Problem Frames,
the part of the world to be transformed is called the environment. Jackson
states that the parts of any systems engineering problem are the machine,
the problem world (environment), and the requirement. Figure 4.1 shows a
generalized Problem Frame diagram and its application to the cruise control
system.

In our application of Problem Frames to the cruise control system, the
machine we want to build is the cruise control software running on the en-
gine controller. The physical world around us, i.e., the problem world the
cruise control software is interacting with, consists of the human machine
interface, i.e., the pedals, the lever, and the ignition, as well as the vehicle
including engine, engine control, and wheels which need to be controlled by
the cruise control. The requirements relate phenomena controlled by the hu-
man machine interface, e.g., control signals with phenomena controlled by
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Machine Problem
World Requirement

software/
hardware

“stakeholder”
needs

what the problem
is about

“If the driver
presses the 
resume button, the
vehicle shall resume
and maintain the 
previously stored 
target speed”

Figure 4.1: Problem frames and its application to the cruise control system.

the vehicle, e.g., vehicle speed.
The Problem Frames approach enforces that the terms used in the re-

quirements are precisely defined using so called phenomena which need to be
unique throughout the whole requirements document. Moreover, the Prob-
lem Frames approach helped us to clearly distinguish between the require-
ments, i.e., a description of the desired behaviour in terms of the environment,
the environment, i.e., a description of the environment and its assumptions,
and the machine, i.e., the actual cruise control system we want to built.

In order to derive a semi-formal requirements specification of the cruise
control system we applied the process steps shown in Figure 4.2 which schemat-
ically describe our extended Problem Frames approach. Each process step
answers specific questions.

The result of the semi-formal requirements specification is a hierarchy of
problem diagrams which describe the requirements, the environment, and the
cruise control system itself at different abstraction levels. Figure 4.3 shows
the resulting hierarchy of problem diagrams of the cruise control system after
the application of the process steps described in Figure 4.2.

As you can see from Figure 4.3 the hierarchy starts with the context dia-
gram Context 0 which describes the cruise control system, its environment,
and the requirements from a very abstract point of view. In the first step,
this abstract context diagram is elaborated into a more concrete context di-
agram (Context 1 ) which itself is projected into three different subproblems,
namely signal evaluation, velocity control and display. In an elaboration of
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1. Identification of the System Context

2. Elaboration of the System Context

3. Identification of Subproblems

4. Projection into Subproblems

5. Elaboration of Subproblems

What is the abstract environment the machine needs to interact 
with? How does the environment interact with the machine?

Which domains must be considered for the description of the 
environment? How are these domains connected to each other 
and the machine? Which are the main requirements?

Which aspects of the problem need to be considered? How do 
we want to decompose a problem?

Which requirements and which domains are distributed to 
which subproblem?

How can we elaborate each subproblem? Which are the 
specific domains and requirements of each subproblem?

Figure 4.2: Semi-formal requirements specification process using Problem
Frames.

a problem diagram, the environment and the requirements are refined, i.e.,
they are described in a more concrete way. During a projection of a problem
diagram, the machine, i.e., the system we want to built is split into different
aspects. A more detailed description of elaboration and projection can be
found in [LGR09].

As you can see from Figure 4.3, an elaboration is followed by a projection
which is then followed by an elaboration and so on. This process is iterated,
until the system is fully described.

For a more detailed description the semi-formal specification of the cruise
control, we refer the interested reader to Appendix A.

4.4 Hazard Analysis

The purpose of the hazard analysis is to analyse possible hazards that can
occur when the functions provided by the cruise control system are used by
the driver in order to derive safety requirements for the system which can
then be proved in the formal specification using Event-B. To systematically
analyze possible hazards and to identify safety requirements the following
process is used:

1. Identify main functions of the cruise control system from the semi-
formal requirements specification
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Figure 4.3: Hierarchy of problem diagrams for cruise control system.
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Main Function Hazards Safety Requirements
Pressing brake pedal
deactivates CrCtrl
(temporarly)

Pressing brake pedal
does not deactivate
CrCtrl

Brake pedal pressed implies
no acceleration demand of
CrCtrl

Main-switch OFF
switches CrCtrl OFF

Main-switch OFF
does not switch
CrCtrl OFF

Main-Switch OFF implies
no influence of the CrCtrl
on the acceleration demand

Table 4.1: Hazard Analysis Table

2. For each main function of the cruise control: identify and note down
possible hazards / malfunctions that can occur

3. For each of the hazards / malfunction: identify safety requirements
which will prevent the hazard

It is important to note that not every malfunction / hazard will be critical
with regard to system safety. Furthermore, some identified hazards / mal-
functions might be outside the system boundaries we are considering during
pilot deployment. This is especially true for hazards / malfunctions which
are caused by hardware failures since we are looking at the software part of
the cruise control only.

Table 4.1 shows an excerpt from the hazard analysis table for some of
the functionality provided by the cruise control system. Using the safety
requirements shown in the last column in Table 4.1 we can derive possible
invariants which can then be proven using the theorem provers provided
by Event-B. For example, from the safety requirement Main-Switch OFF
implies no influence of the CrCtrl on the acceleration demand we can derive
the following safety invariant:

inv1 : P Env ControlInterfaceSignals MainSignal = FALSE
⇒ P CrCtl Acceleration = NO ACCELERATION

If we can prove that this invariant holds we have proven that the safety
requirement stated above holds in the model.

4.5 Formal Specification

The purpose of the formal specification phase is to model the cruise control
system in Event-B [Abr09b]. Our input for a formal specification of the cruise
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control system in Event-B is the semi-formal specification which has been de-
rived from the informal specification by the process described in Section 4.3.
During pilot deployment we developed several guidelines for constructing for-
mal specifications in Event-B from semi-formal specifications in our extended
Problem Frames approach which will be described in the following.

The first step in constructing a formal specification of a control system in
Event-B is to think of the refinement strategy, i.e., a strategy about structur-
ing the refinement levels of a formal specification in Event-B. Since Event-B
supports so called contexts which describe the static aspects of the system
to be modelled and so called machines which describe the dynamic aspects
of the system to be modelled one has to think about a refinement strategy
for contexts as well as one for machines. During our first experiments of
formally modelling the cruise control system in Event-B we found out that
our semi-formal requirements specification with different abstraction levels
can be mapped to a formal specification in Event-B in the following way:

• Each problem diagram is modelled as a separate machine with its as-
sociated context.

• Elaborations of an abstract diagram into a more concrete one are real-
ized in Event-B by refinement of the machine and its associated con-
text.

• Projections of a problem diagram into two or more subproblems are re-
alized in Event-B by shared-variable decomposition [Abr09a] with some
changes.

• Each phenomenon defined in a problem diagram is modelled either as
a constant or a variable in Event-B.

• Abstract phenomena which will be elaborated later are realized in
Event-B using records.

• Elaborations of phenomena in problem diagrams are realized in Event-
B using data refinement.

• Requirements stated in problem diagrams are realized in Event-B by
events and/or invariants.

Table 4.2 shows this mapping of Problem Frame elements to Event-B
elements in a compact form.

We applied this refinement strategy on the cruise control system. Figure
4.4 shows the refinement hierarchy of Event-B machines for the first levels of
the problem diagram hierarchy shown in Figure 4.3.
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Problem Frames Event-B
Problem Diagram Machine / Context
Phenomenon Variable, constant or predefined

type (e.g. NAT)
Types of phenomena Carrier set or constant
Elaboration of a problem diagram Refinement of a machine or con-

text
Projection of a problem diagram Decomposition of a machine or

context
Elaboration of phenomena Data refinement of variables / de-

fined types
Requirements Events / invariants

Table 4.2: Mapping of Problem Frame Elements to Event-B Elements

Context_0 Context_1

Display_0

VelocityControl_0

SignalEval_0

Display_1

VelocityControl_1

SignalEval_1

Legend
= Refinement
= Decomposition

Figure 4.4: Cruise Control - Hierarchy of machines in Event-B.
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As you can see from Figure 4.3 and Figure 4.4, each problem diagram
is modelled as a separate machine in Event-B. Elaborations of problem dia-
grams are realized using refinement of the machine and projections of problem
diagrams are realized by decomposition of the abstract machine in Event-B.

For a more detailed description of mapping problem diagrams to Event-B
of the cruise control, we refer the interested reader to Appendix B.
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Chapter 5

Results of Pilot Deployment

5.1 Overview

In this chapter we report on results of the pilot deployment and give feedback
to the DEPLOY methods and tools.

In Section 5.2 we present evidence that the use of our semi-formal re-
quirements engineering method is very helpful to close the gap between a
requirements specification in natural language and a formal model in Event-
B. However, the conrete mapping of extended Problem Frames to Event-B
model elements (see Section 6) is not fully solved. Therefore, we need more
experience with Event-B before we are able to report evidence about the use
and deployment of Event-B.

Section 5.3 and Section 5.4 gives feedback on the DEPLOY methods and
tools we applied during pilot deployment. For each method and tool we
describe its strengths and weaknesses as well as open issues that need to be
addressed for full deployment in the automotive sector.

5.2 Evidence

Due to the fact that we have worked most on the semi-formal requirements
engineering process and have not finished the complete Event-B model of the
complete cruise control we want to restrict the evidence results for this report
on the use of Problem Frames and will postpone the results on evidence we
gathered with Event-B.

To evaluate the extended Problem Frame method we measured several
key parameters (number of modelled requirements, number of additional re-
quirements, number of rejected requirements, effort spent). The starting
point of the evaluation was the original requirements set for the cruise con-

27
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trol. The aim of applying our method was to get a requirements set of the
cruise control system which is complete, precise, consistent, hierachical and
redundance-free. Furthermore, this requirements set should be amenable for
formal modelling.

Because the original requirements set is not structured hierarchically, as a
result of the requirements elicitation process the same functionality is getting
described from different perspectives. This leads naturally to some redundant
requirements.

Figure 5.1: Quantitative results

Figure 5.1 shows the quantitative results of applying our requirements
engineering method to the cruise control system. On the x-axis the total
effort in working hours is shown. On the y-axis four curves are plotted.
The first curve shows the total number of requirements as a refernce. This
curve changes over time due to the addition of new requirements (shown in
a seperate curve) and the rejection of original requirements (shown in the
third curve).
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In total we ended up with nearly half the number of text units (require-
ments) needed to describe the required functionality of the cruise control
system. Thus, by applying our requirements engineering method, we were
able to reduce the total number of text units (requirements) by more than
40 percent. The total effort we spent on the restructuring and improvement
of the requirements amounts to approximately 300 working hours.

The evaluation results clearly show that by applying our structured re-
quirements engineering method the understandability and coherency of the
requirements can be increased while at the same time the total number of
requirements can be reduced by more than 40 percent. Furthermore, our
concept of hierachical requirements allows us to differentiate between a com-
plete requirements set on a system level and a more detailed requirements
set on a functional level.

As a result of this we are not always expecting to reduce the number of
requirements by 40 percent. But we are convinced that we are usually able
to reduce the number of requirements and to increase in the same step the
quality.

5.3 Feedback to Methods

The general idea of this section is to give feedback to method-developers to
improve their methods. In particular the strengths and weaknesses as well
as open issues of the used methods are discussed.

5.3.1 Requirements Engineering using Problem Frames

A well-developed and structured requirements document which allows us to
identify different abstraction levels is a key to successful formal modelling
with a refinement-based method such as Event-B. Furthermore, the method
used for requirements engineering shall provide means for handling large
and complex systems by decomposing a problem into smaller parts and later
recomposing these individual parts. Finally, it should support a semi- or pre-
formal notation of requirements to make the step from informal requirements
to a formal model manageable.

We decided to use Problem Frames for this process and found the follow-
ing strenghts and weaknesses:

Strengths

• Clear separation of requirements, environment, and system to be built
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• Supports elaboration and projection of the system into subproblems /
different aspects

• Supports a description of requirements at different levels of abstraction

• Requirements are more precise than informal requirements

Weaknesses

• Sometimes requirements are still not as precise as needed for formal
modelling

• The refinement strategy in Problem Frames is not necessarily compat-
ible with Event-B (see 5.3.5)

• Separation of model information and requirements is not easy

Still an open issue is the question how to specify non-functional require-
ments like timing requirements. This should be addressed in the future.

5.3.2 Mapping Problem Frames to Event-B

With semiformal requirements in Problem Frames the mapping to Event-B
is very promising because of the similar notation of refinement in Event-B
and elaboration in Problem Frames approach. We have some guidelines for
the translation (see Section 4.5) but there are still some challenges left, i.e.,
the problem of tracing the implementation of requirements in the Event-B
specification.

Having started with Problem Frames, the use of abstract functions is
quite usual. It is easy to state that two or more phenomena are in some
kind of relation or influence each other. In Event-B modelling this kind of
functions is painful because it complicates their refinement in more concrete
models and makes the proofs very difficult. Therefore, we decided not to use
abstract functions for modelling these kind of relations. Instead, we used non-
deterministic assignments knowing that they have a weaker expressiveness
than abstract functions.

Another open question is how to derive interesting invariants (besides
the type invariants). In our pilot we derive invariants from the requirements
in Problem Frames and from a hazard analysis. Especially if we want to
systematically derive invariants from Problem Frames we need some form of
guidelines to derive them.
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5.3.3 Requirements Traceability

With the translation of semiformal requirements into a formal modal there
is the challenge of traceability between requirements in Problem Frames
and their implementation in Event-B. Some of the requirements in Problem
Frames might be modelled as invariants, some might be guards of an event
or actions. Some of them might not only occur at a specific point (such as an
event) but could be spread over a whole model. A requirement in Problem
Frames describes how a domain should be influenced under certain conditions
by the machine which makes the mentioned possibility of spreaded require-
ments in the Event-B model more likely. There is methodogical work to do
to solve this problem.

However, ordered and structured requirements at different levels of ab-
straction in a semiformal notation instead of completely informal require-
ments are helpful to achieve traceablity.

5.3.4 Modelling of Control Systems in Event-B

Although modelling in Event-B is usally straightforward there are some chal-
lenges we found modelling a control system:
There is the general idea that a change of the signals in the environment
should lead to a reaction of the controller, which will effect the environment
with actors. For this we need some kind of ordering of events. A simple
nondeterministic choice of events in not sufficient for this kind of problem.

In order to generate C-Code from the Event-B model, it is required to
have some kind of support for scheduling of events as well as the possibiliy
to distinguish between the part of the Event-B model concerning the envi-
ronment and the part concerning the actual machine.
These are strengths and weaknesses we found modelling a control system in
Event-B:

Strength

• The cookbook strategy for modelling control systems can be applied in
principle (see [But09]).

Weaknesses

• In order to prove safety invariants that result from the hazard analysis
we need to define the order of events

• Specification of flow of events using auxiliary variables is very cumber-
some (without adequate tool support)
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• Timing issues and continuous behaviour (control theory, see 3.2) have
not been included yet

• Need to distinguish between parts of the machine and parts of the
environment in Event-B model

5.3.5 Refinement Strategy and Decomposition

The refinement stategy in Problem Frames is not necessarily the same as
in Event-B, but we get some orientation of the existing refinements, which
is quite helpful. It is difficult to decide on a refinement strategy before the
actual work on modelling is performed.

The possiblity to decompose the model in Event-B is in particular re-
quired if the model is large and more than one person has to work on it.
The two decomposition styles (A-style and B-style) are not sufficient for our
model. We chose A-style decomposition, but if a variable is shared, it cannot
be refined further. Although there is the obvious difficulty to synchronize
such a decomposition we require to have support for it in order to model the
cruise control system.

5.3.6 Modelling the Flow of Events

The possiblity of modelling the flow of events in not yet used, but as men-
tioned in Section 5.3.4 we need some kind of ordering events. Auxiliary
variables are too complicated for large projects, so using flows could be a
solution, but we will need tool support (see 5.4.5). The interesting question
will be how and when to introduce flows in the model.

5.3.7 Modelling Structured Types

There is the need for refining data structures (records) during the develop-
ment of the pilot. Therefore we would like to have records and tool support
for data refinement (see Section 5.3.5 and Section 5.4.6), which is already
work in progress.

5.3.8 Summary

Although there are some open questions and challenges left, the use of the
general DEPLOY methods is very promising.
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5.4 Feedback to Tools

The general idea of this section is to give feedback to the tool-developers to
improve the tools. In particular strengths as well as weaknesses we found
using the tools are discussed.

5.4.1 Rodin Platform

Using the RODIN Platform without any help is quite difficult. Some docu-
mentation is available but there is the strong need for further documentation
and teaching material for the use of the tool. The available documents should
be extended to ease the usage.

Furthermore we would like to have the possibility to add multiline com-
ments which can be written between events. The current way of handling
comments in which they only can be attached to Event-B model elements is
too restrictive.

5.4.2 Text Editor

We found the text editor very helpful and prefer to use this representation,
but the use of labels with their naming conventions can be improved. The
text editor should generate labels for invariants, actions, guards etc. au-
tomatically. At least it should be possible to fix name clashes of labels in
abstract machines and concrete machines via Eclipse Quick-Fix.

5.4.3 Automated Provers

For the automated prover extended teaching material is needed. A detailed
description of when to use which prover and how to get hints from the proof
tree is needed.

5.4.4 Requirements Plugin

Although there exists a requirements plugin for RODIN, the support for
tracing requirements to model elements in Event-B is not yet sufficient. Fur-
thermore, it would be very nice to have a flexible requirements plugin which
can be used with our Problem Frames approach. Currently, the requirement
plugin just supports natural language requirements which have to be pro-
vided by a simple list. Having a generic interface to different requirements
engineering methods would be very helpful.
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5.4.5 Tool Support for Flow of Events

As mentioned in Section 5.3.6 we will need tool support for the use of flows.

5.4.6 Tool Support for Structured Types

As mentioned in Section 5.3.7 we will need tool support for the refinement
of structured types. It should be easy for the developer to enter structured
types such as records. Any internal overhead dealing with the refinement
of records, i.e., witnesses with accessor functions should be hidden from the
user of RODIN.

5.4.7 Summary

The used tools are already quite good, but further development is needed.
Especially extended documentation is important. A deployment may fail
because of method problems, it may also fail because of tool problems, but
it will definitely fail if there is no concept and no material for teching the
method.



Chapter 6

Open Research Issues

This chapter reports open research issues arising from the pilot deployment
as well as possible solutions developed by the University of Newcastle in the
first 18 months of DEPLOY (mainly in the context of Task 8.1) and is written
from the perspective of the academic partner.

6.1 Introduction

This chapter describes the major open research strands we identified so far
for pilot deployment in the Automotive Sector, i.e. Linking Problem Frames
and Event-B and the HJJ Approach [JHJ07].

The first research strand is described in Section 6.2. Currently two dif-
ferent solutions to this research strand are investigated. The first solution -
the ”Bosch approach” - has been described in Chapter 4 and in Appendix
B. In Section 6.2.1 open issues of the Bosch approach are discussed. Two
alternative proposed solutions which are currently being investigated by the
University of Newcastle are described in Section 6.2.2 - Jackson’s diagrams
extensions and Section 6.2.3 - The UML-B way.

The second research strand is about the applicability of the HJJ approach
to safety-critical embedded automotive systems such as the cruise control.
The application of this approach to the cruise control system has also been
investigated by the University of Newcastle. First results and open issues of
this application are described in Section 6.3.

For both of these strands, the collaboration with Bosch has resulted in
an ideal scenario for ”in vitro” experimentations. Besides reporting on first
results and open research issues along the two research strands mentioned
above this chapter also addresses an intended strategy for future deployment
in Section 6.4.

35
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The work on the two research strands reported in this chapter has been
partly published before in a number of papers. The interested reader will find
more technical details in [Maz09b] and [Maz09a]. The ideas related to Jack-
son’s diagrams extensions are only sketched there and will have more space
in future publications. In [Jon] the reader can find (in Chapter 7) a report
of some of the current problems described in a preliminary form. Although
the presented concepts have not yet been fully deployed by the Deployment
Partners, the HJJ method suggests the use of Problem Frames in its first
phase. Since Bosch has been working on a Cruise Control requirements spec-
ification in Problem Frames for the last 18 months, this represents an ideal
application of our intuitions.

6.2 Linking Problem Frames and Event-B

Linking Problem Frames and Event-B is not an easy task since both methods
represent substantially different views of the system. There are indeed two
different underlying philosophies behind the two approaches. In the origi-
nal Problem Frames Approach [Jac01] user requirements are seen as being
about relationships in the operational context and not about functions the
software system must perform and the focus is not immediately on the func-
tional behaviour. It is someway a change of perspective with respect to other
requirements analysis techniques. Consider, for example, the Use Case ap-
proach [Bit02]. Here what we do is specifying the interface and the focus is
on the interaction user/machine. With PFs we are pushing our attention be-
yond the machine interface, we are looking into the real world. The problem
is there and it is worth to start there. Some of the ideas derived from [JHJ07]
(not specifying the digital system in isolation and deriving the specification
starting from a wider system in which physical phenomena are measurable)
can be indeed tracked back, with some further evolution, to [Jac01]. If we
want to use PFs to develop a method for specification of systems, i.e. a
description of the machine behaviour, we have to start understanding the
problem.

The entire PFs software specification goal is modifying the world (the
problem environment) through the creation of a dedicated machine which
will be then put into operation in this world. The machine will then operate
bringing the desired effects. The overall philosophy is that the problem is
located in the world and the solution in the machine. The most important
difference with respect to other requirements methodologies is the emphasis
on describing the environment and not the machine or its interfaces. The
focus of Event-B is, instead, different since its purpose is describing reactive



6.2. LINKING PROBLEM FRAMES AND EVENT-B 37

systems with the help of events, and refinement is used to move from one level
of abstraction to the next one, using mathematical proof to verify consistency
between the two levels. It is not difficult to see how the emphasis here is more
on the machine and its interfaces, an approach very different from PFs.

Thus, bridging Problem Frames and Event-B is a difficult task. Since this
mapping is not straightforward it has been separately investigated by Bosch
and the University of Newcastle. Although the ”Bosch Approach” (see Sec-
tion 4.3 and Section 4.5) already represents a significant step forward towards
linking problem frames and Event-B there are still some open research issues
which are described in Section 6.2.1. Two alternative approaches intended to
link problem frames and Event-B, namely ”Jackson’s diagrams extensions”
(not to confuse with the Bosch extensions to Problem Frames described in
Section 4.3) and ”the UML-B way” are described in Section 6.2.2 and Section
6.2.3.

6.2.1 The Bosch Approach - Open Issues

At Bosch a significant step forward towards linking problem frames and
Event-B has been taken. This progress is witnessed by the work reported in
this report, especially in Chapter 4 and Appendix B about Pilot Deployment.

In Section 4.5, Table 4.3 shows the mapping between Problem Frames
and Event-B. It is worth noting how the semi-formal specification generated
by the process described above is still not expressive enough to link Problem
Frames to Event-B since it lacks proper behavioural information. Indeed, it
is not clear how a general requirement should be mapped into one or more
events in a repeatable way without such a precious description or represen-
tation in a proper formalism (or formal language). So far the requirements,
although clearly structured, are still expressed in natural language and the
overall system behaviour has not been described anywhere. This considera-
tion shows the need for a formalism able to express the dynamic behaviour
and here is where Bosch opted for Finite State Machines as a way to augment
the mainly static information given by PDs. Although this part of the work
regarding behaviour is still in progress, it is already clearly recognizable how
the overall Bosch methodology is a significant step toward full deployment.
Anyway, it is worth emphasizing the need for behavioural ”extension” of PDs
(and a more precise process to get there) when considering the future direc-
tions. This will become even clearer in the following section when presenting
alternative solutions to the problem.

Other open research issues of the Bosch approach are briefly described in
Section 5.3 - Feedback to Methods.
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6.2.2 Jackson’s diagrams extensions

It is clearly understood that the objective of a PF analysis [Jac01] is the
decomposition of a problem into a set of subproblems, where each of these
matches a Problem Frame. A Problem Frame is a problem pattern, i.e the
description of a simple and generic problem for which the solution is already
known. Our perception is that, when describing the behaviour of interfering
processes - especially when faults are considered as a special case of interfer-
ence - the diagrams and the patterns provided are not powerful enough. For
this reason, Jackson’s diagrams extensions have been introduced in [Maz09b].
In our current understanding Interference Diagrams and Process Diagrams
would be able to show how a Problem Diagram is linked to the dynamic
set of existing processes, how they belong to different domains and how the
requirements are related to this:

1. Interface Diagram: it represents an external, static view of the sys-
tem. It is able to identify the operations of the system and its domains,
and the input/output data of these operations (with their types). The
relationship of these with the requirements identified in the Problem
Diagram has to be represented at this stage.

2. Process Diagram: the whole system is represented as a sequential
process and each of its domains as a sequential process. Concurrency
within the system or within its domains is modelled by representing
these as two or more subcomponents plus their rely and guarantee
conditions [Jon81, Jon83b, Jon83a]. This is an external, dynamic view
of the system and its domains.

In Figure 6.1 the process from Context to Behaviour is represented. Al-
though there has been close engagement with Bosch on the mini-Pilot and
pilot study requirements (especially regarding the use of Jackson’s Problem
Frames in conjunction with formal modelling in Event-B), and a number of
on site meetings have been successfully performed, so far this problem is still
open and the use of Jackson’s diagrams extensions has not yet been fully
investigated.

6.2.3 The UML-B way

UML-B [SB06], is a graphical formal modelling notation combining UML
and Event-B. Although similar to UML, its main advantage is the fact that
it provides tool support including a drawing tool and a translator to generate
Event-B models. The tool support is provided in the form of a plug-in for the
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Figure 6.1: From Context to Behaviour

RODIN platform which is an Eclipse-based formal development framework
for Event-B. By using UML-B one can graphically model various aspects
of a system using class diagrams and finite state machines. One can also
attach, graphically, formal constructs like invariants and theorems to the
two diagram types. There are two very appealing things about UML-B. The
first is its use of the ”precise” mathematical semantics of Event-B combined
with the graphical representation that can be automatically translated into
Event-B. The second interesting aspect is the possibility of defining finite
state machines to “enrich” the “static system representation” (for example
class diagrams) in such a way to include behavioural details.

While Jackson’s diagrams extensions represent a Problem Frames exten-
sion to get closer to Event-B, UML-B is an effort in the other direction.
Both the ideas presented here aim at establishing an ”intermediate” nota-
tion able to fill the Problem Frames/Event-B gap but starting from different
points. Using class diagrams, UML-B provides a way of extending Prob-
lem Diagrams with ”operations” like Interface Diagrams. Furthermore when
depicting state machines UML-B is describing the system in its behavioural
aspect in a similar way to what Process diagrams intend to do. This may ap-
pear surprising since Jackson’s diagrams extensions have been devised with
(almost) no knowledge of UML-B. Anyway, this seems as a revealing natural
hint suggesting how, whatever side one decides to start with, filling this gap
requires a ”extension” in terms of types and behaviour.

Although UML-B seems to be promising for a description of the dynamic
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behavior of the system which is missing in the original problem frames ap-
proach there are still open research issues that should be investigated. Espe-
cially it is not yet clear how to model implementation specific requirements
in state diagrams in UML-B.

6.2.4 Comparsion of the Approaches

All the approaches are certainly appropriate for reaching the desired formal
specification, but we believe there is a subtle difference that it is worth con-
sidering. The Bosch approach, with respect to the others, is delaying the
moment in which the behavioral information is added. Obviously, both the
attitudes present a bill with pros and cons. For example, adding behavioural
information at an early stage means having to cope with further details that
you could abstract over while you want to concentrate on decomposition
or refinement. However, ignoring the behavioural nature of Event-B at the
beginning can have negative consequences and possible additional complica-
tions at the time of the encoding. A mixed solution might be considered to
maximize the positive impact of the different approaches.

6.3 The HJJ Approach

The HJJ research strand inside DEPLOY is about investigating and exploit-
ing an approach for deriving specifications of systems not running in isolation
but in the physical world and interacting though sensors and actuators with
physical phenomena. This work has to be intended as a development of the
ideas presented in the original Hayes/Jones/Jackson paper [JHJ07]. During
the first 18 months of the project our methodological work focused mainly
on the definition of a HJJ method for formally deriving such specifications.
The method was indeed only initially sketched in the original paper. In
[Maz09b] and [Maz09a] the difference between methods and languages is of
main importance and it is precisely stated, the problems arising when con-
fusing the two terms are well explained. Furthermore, the need for a method
is identified (what it was missing in [JHJ07] was indeed the method not the
formal approach). A more precise formalization of the Hayes/Jones/Jackson
method is given and the idea of Layered Fault Tolerant Specification (LFTS)
is proposed to make the method extensible to fault tolerant systems. The
LFTS principle consists in layering the specification in different levels, the
first one for the normal behaviour and the others for the abnormal. The
abnormal behaviour is described in terms of an Error Injector (EI) which
represents a model of the erroneous interference coming from the environ-
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ment. This structure has been inspired by the notion of idealized fault toler-
ant component [LA90] but the combination of LFTS and EI using contracts
(rely/guarantee, for example, but other solutions might be considered) to
describe their interaction can be considered as a novel contribution of the
project. More details about the method and its approach can be also found
in [Jon], in the following we just provide an overview focusing on the auto-
motive case study which represents an interesting challenge and gives us the
possibility of exploiting all the main ideas discussed there.

6.3.1 The HJJ method and its Steps

In [Maz09a] we analyzed the method introduced in [JHJ07] according to
some properties that a method should have. Three macroscopic steps are
recognizable in the method:

1. Define boundaries of the systems

2. Expose and record assumptions

3. Derive the specification

Our idea is not committing to a single language/notation - we want a
formal method, not a formal language - so we will define a general high level
approach following these guidelines and we will suggest reference tools to cope
with these steps. It is worth noting that these are only reference tools that
are suggested to the designers. A formal notation can be the final product of
the method but it still needs to be distinguishable from the method itself. In
figure 6.2 these steps are presented and it is shown how different tools could
fit the method at different stages. We call these notations the plug-ins since
they can be plugged into the different steps.

Figure 6.2: Steps and Reference Tools

Figure 6.2 is a generic representation of the method where we want to em-
phasize the different steps that were not clearly defined previously in [JHJ07].
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The reader will understand that this is still a simplification of the process.
We use the word ”steps” instead of ”phases” since we do not want to sug-
gest a sort of linear process which is not always applicable, in the average
case (especially when coping with fault tolerance as we will discuss later).
We imagine, in the general case, many iterations between the different steps.
The idea of the method is to ground the view of the silicon package in the
external physical world. This is the problem world where assumptions about
the physical components outside the computer itself have to be recorded.
Only after this can we derive the specification for the software that will run
inside the computer. The more precise formalization of the method and the
features it has to exhibit is one of the main contributions of [Maz09a].

6.3.2 LFTS and the Automotive Case Study

One of the requirements of the cruise control, that we will analyze here, is
to be switched off if an error in engine speed sensor is detected. This has
to be taken into account in the specification. When the engine power is
not adjusted properly, the absolute difference between the actual speed and
the desired speed will not be decreased. A monolithic specification gath-
ering together these aspects and the more ordinary ones would of course
result in something complete but certainly not easily readable and well
organized. Pragmatically, following the LFTS principle, we have to or-
ganize the specification in two layers: normal/abnormal (i.e. speed acqui-
sition fails) adding a weaker layer of rely conditions for the second one
[Jon81, Jon83b, Jon83a]. We use the CrCt to show how the idea of LFTS
can be applied in (semi)realistic systems, i.e simplifications of real system for
the sake of experimenting with new ideas but still not mere toy examples.
Let us consider the following ideal piece of CrCt code:

while (target <> current){
delta := smooth(target, current);
result := set_eng(delta);

}

The car speed is acquired in smooth(target, current) and then a delta
is calculated for the car to have a smooth acceleration (smoothness has to
be determined by experience). The specification of this code in terms of
P,Q,R,G is the following (it is expressed in natural language since we are not
giving a mathematical model of the car here):

• P: target has to be in a given range
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Figure 6.3: Simplified State Machine (no tip up/down)

• Q: delta is zero and the driver has been comfortable with the acceler-
ation

• R: the engine is adjusted (smoothly) according to delta

• G: the absolute value of delta is decreasing

The requirement shown in Figure 6.4 is not taken into account in this
ideal piece of code, so in case the speed acquisition goes wrong the guarantee
will not hold and the absolute value of delta will not be decreased. Indeed,
following the LFTS principle we should organize it in two layers: a normal
mode and an abnormal one (speed acquisition goes wrong):

while (target <> current){
delta := smooth(target, current);
result := set_eng(delta);
if result <> OK then

switch_off
}

This means adding a weaker layer of conditions for the ”abnormal case”
that will still be able to provide certain (weaker) guarantees. If speed acqui-
sition goes wrong we do not want to force the engine to follow the delta since
it would imply asking for more power when, for example, the car speed is
actually decreasing (maybe an accident is happening or it is just out of fuel).
By switching the engine off we avoid an expensive engine damage. Figure
6.4 summarizes the layering and the entire structure of this simple example.

So far Jackson’s diagrams extensions like Interference Diagrams and Pro-
cess Diagrams have been not fully developed and exploited in this context,
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Figure 6.4: Layered CrCt Specification

however an ideal Process Diagram for the Cruise Control is depicted in Fig-
ure 6.5. For the diagram to be complete we should be able to describe the
rely/guarantee conditions of each subcomponent represented. In its current
state this diagram is able to show how a Problem Diagram is linked to the
dynamic set of existing processes, how they belongs to different domains and
how the requirements are related to this.

6.4 Future Strategy for Deployment

The future strategy for deployment will certainly depend on the appropri-
ateness of the different approaches on linking problem frames and Event-B.
Although we do not know yet which of the approaches is suited best, at least
we identified the following main goals for future deployment:

1. Exploring the issues around Finite State Diagrams (and their transla-
tion to Event-B)

2. Exploring link between requirements notations (especially PFDs) and
Event-B models

Both these investigations need to gain more confidence with the different
ways proposed to select the most approachable for the Cruise Control. Other
goals are related to different issues that may result, if solved, in a major
advance in formal methods deployment in the Automotive Sector:
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Figure 6.5: Static and Dynamic views combined

1. Formally defining the abnormal behaviour on the basis of a dedicated
formal language with well defined semantics. Timebands have been
investigated in this regard but other more specific solutions may result
interesting as well.

2. Looking at issues around ”discretising” continuous requirements

3. As mentioned in section 5.3.4, timing issues and continuous behavior
have not been included and need further investigation.

As far as we are aware (1) is only an issue for Bosch and SSF while, in the
broader interpretation, (2) and (3) could be of interest for all deployment
partners.
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Chapter 7

Conclusions

We would like repeat the goals for the task T1.3 Pilot Deployment as de-
scribed in the DoW and comment the degree of fullfilling these goals in this
Chapter. The goals for task T1.3 were:

• Amend the requirement specification of selected subproblem for formal
modelling and validate the obtained formal requirement specification

• Use the DEPLOY methodology to construct designs and prototype
implementations and validate the implementation

• Identify and evaluate benefits/drawbacks of the methodology, appraise
cost-effectiveness

• Identify and evaluate consequences for development process

The original idea - during the time the DoW was written - was to first
spend some work on amending the requirements before starting with the
Event-B model. In WP1 we decided very early that this approach was not
feasible due to several reasons. First of all, the requirements we obtained
from the traditional requirements engineering process were not the optimal
starting point for formal modelling. The gap between requirements in nat-
ural language and a formal model e.g. described in Event- B were simply
too big. From our point of view, the validation problem in such a one-step
approach is not economically solveable. Such a development process might
work very well in small scaled applications but not in industrial size applica-
tions. Therefore, we developed an approach to overcome this problem which
has been described in Section 4.3. This approach uses a semi-formal require-
ments engineering method with several extensions to bridge the gap between
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informal specification and Event-B. Using this approach we were able to di-
vide the big validation problem into two smaller ones. As a side effect we
also raised the quality of the requirements.

Our first experiences in modelling in Event-B have been very encouraging.
Nevertheless there are some challenges left, namely expressing responsiveness
and time in Event-B. These two issues need further research. We are currently
aware of the fact that Event-B does not provide means to model closed loop
controllers and continous behavior. Therefore, we decided not to include the
development of closed loop controllers in the Event-B development process.
It is an open question to what extent simplified models of a controller could
be included in the Event-B model. Again more research is needed here.

We have gathered evidence (see Section 5.2) that the use of Problem
Frames is very helpful. We reduced the number of requirements and in-
creased the quality by the same means. From an overall perspective the
refinment strategy in Event-B naturally follows the refinment strategy of our
extended Problem Frames Approach. However, some questions still remain
open. For example, the concrete mapping of extended Problem Frames to
Event-B model elements (see Section 6) is not yet fully solved. At the mo-
ment more experience with Event-B is needed before we are able to report
evidence about Event-B.

We also have identified some consequences (Section 3.1) for the devel-
opment process (more consequences may be necessary if we have gathered
more experience and the remaining open questions are solved). The biggest
change at the moment is the introduction of an intermediate phase, i.e., the
semiformal requirements engineering phase using Problem Frames.



Appendix A

Cruise Control - Semiformal
Specification

The following sections describes the application of the semi-formal require-
ments engineering process on the cruise control system.

A.1 Identification of Abstract Context Dia-

gram

We start with the abstract context diagram (Context 0) which is shown in
Figure A.1.

The driver interacts with the environment Env at interface a using con-
trolled phenomena of the environment, e.g., the lever. The cruise control
machine interacts with the domain Env at interface b. At interface b the ma-
chine shares part of the phenomena controlled by itself with the environment,
e.g., the desired acceleration P CrCtl Acceleration, and it sees phenomena
that are controlled by the environment and shared with the machine, e.g., the
vehicle speed P Env VehicleSpeed. At interface c the machine shares phe-
nomena controlled by itself with the designed domain Speed Memory, i.e.,
the target speed P CrCtl TargetSpeed and it sees phenomena controlled by
the speed memory which are shared with the machine, i.e., the stored target
speed P SpeedMemory StoredTargetSpeed.

The requirement R500 shown in Figure A.1 states:

R500.1: The target speed (P SpeedMemory StoredTargetSpeed) must re-
late to the control signals (P Env ControlSignals) the environment gen-
erates. This relation must guarantee safety (P Para, P Env) and ensure
comfort if possible.
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Figure A.1: Cruise Control - Abstract context diagram (Context 0).

R500.2: If the corresponding control signals (P Env ControlSignals) are re-
ceived and if it is safe and possible, the vehicle speed (P Env VehicleSpeed)
must be influenced comfortably in one of the following three ways:

• The vehicle speed must stay to the target speed (P Speed-
Memory StoredTargetSpeed) as close as possible or reach the target
speed (P SpeedMemory StoredTargetSpeed) as soon as possible.

• The vehicle speed must increase/decrease.

• The vehicle speed must not be influenced.

R500.3: At any given time, the output phenomena (P Env Output) must
correctly reflect the target speed (P SpeedMemory StoredTargetSpeed)
and the current state (P StateModel StoredState) of the cruise control sys-
tem.

The requirement R500 refers to phenomena of the environment domain,
i.e., control signals of the cruise control interface, and of the speed memory,
i.e., the stored target speed and constrains phenomena of the environment
domain, i.e., the vehicle speed. This is illustrated in Figure A.1 with the
dashed lines labelled with f, g, h, i.
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A.2 Elaboration of Context Diagram

In the second step of the process, the abstract context diagram (Context 0) is
elaborated into a more concrete context diagram (Context 1) which is shown
in Figure A.2.

As one can see from Figure A.2 the cruise control system interacts with
the domains Input HMI, Vehicle&Env, and Output HMI. The domain Input
HMI hereby describes input devices which are used by the driver to influ-
ence the behaviour of the cruise control system. The domain Vehicle&Env
represents the parts of the vehicle which are influenced by the cruise control
system. The domain Output HMI describes output devices which are used
to display information about the cruise control system to the driver. The de-
signed domains Speed Memory and State Model, and the designed description
Parameters describe parts of the cruise control machine which are needed for
implementation.

Table A.1 shows the phenomena which are shared between the different
domains.

Label Controlled by Phenomena
a Driver P DriverInteraction
b Input HMI P Env ControlSignals
c CrCtl P CrCtl State
c State Model P StateModel StoredState
d CrCtl P CrCtl TargetSpeed
d Speed Memory P SpeedMemory StoredTargetSpeed
e Cruise Control P CrCtl Acceleration
e Vehicle&Env P Vehicle, P Env VehicleSpeed
f CrCtl P Env Vehicle CrCtlState
g Output HMI P Env OutputHMI Output
h Parameter P Parameter Para
i Timer P Timer Time

Table A.1: Elaborated context diagram - Shared Phenomena

As you can see from Figure A.2 and from Table A.1, the given domain
Driver is now connected to the domains Input HMI (Interface a) and Output
HMI (Interface g). Thus, the domains Input HMI and Output HMI are
used as connection domains to communicate the interactions of the driver
P DriverInteraction to the CrCtl and to communicate the status of the CrCtl
(P Env Vehicle CrCtlState) to the driver.

Furthermore, you can see from Figure A.2 that requirement R500 has
been decomposed into requirements R501, R502, and R503. The using and
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Figure A.2: Cruise Control - Elaborated Context Diagram (Context 1).
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constraining requirement references of the original requirement R500 shown
in Figure A.1 have been adapted in Figure A.2. They now point to the
domains Input HMI, Output HMI, and Vehicle&Env which represent the de-
composition of the given domain Env. The requirements R501, R502, and
R503 state:

R501: Depending on the control signals (P Env ControlSignals)
and/or switch-off conditions (P Vehicle), the stored state
(P StateModel StoredState) must change safely and comfortably
to UBAT OFF, INIT, OFF, STANDBY, ERROR, CRUISE, RE-
SUME, RAMP DONW, ACC or DEC and/or the stored target speed
(P SpeedMemory StoredTargetSpeed) must be set or deleted and/or the
timer must be set (P Timer Time).

R502: Depending on the stored state (P StateModel StoredState), the
vehicle speed (P Env VehicleSpeed) must be influenced comfortably and
safely in one of the following ways:

• CRUISE/RESUME: The vehicle speed must stay to the target speed
(P SpeedMemory StoredTargetSpeed) as close as possible or must
reach the target speed (P SpeedMemory StoredTargetSpeed) as soon
as possible.

• ACC/DEC/RAMP DOWN: The vehicle speed must increase or de-
crease.

• UBAT OFF, INIT, OFF, ERROR, R ERROR, STANDBY: The ve-
hicle speed must not be influenced.

R503: Information on the current state of the cruise control system
(P StateModel StoredState) must be provided to the driver and other
ECUs (P Env OutputHMI Output). As long as the cruise control sys-
tem is capable of actively influencing the target speed, the stored tar-
get speed (P SpeedMemory StoredTargetSpeed) must be provided to the
driver (P Env OutputHMI Output). At any given time at which state
and speed information is provided to other ECUs or the driver, the out-
put phenomena (P Env OutputHMI Output) must correctly reflect the
stored state (P StateModel StoredState) and the stored target speed
(P SpeedMemory StoredTargetSpeed).
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A.3 Identification of Subproblems

As you can see from Figure 4.2, the next step after the elaboration of the
system context is the identification of subproblems. During pilot deployment
we identified the following subproblems signal evaluation, velocity control,
and display.

A.4 Projection into Subproblems

After the relevant subproblems have been identified, the elaborated context
diagram is projected into the identified subproblems (see Step 4 in Figure
4.2). The result of this step is a set of problem diagrams which describe the
different subproblems. Each subproblem is a projection of the elaborated
system context shown in Figure A.2. In the following we will focus on the
signal evaluation subproblem. Figure A.3 shows the problem diagram for the
signal evaluation aspect of the cruise control system. It is a projection of the
elaborated context diagram shown in Figure A.2. It contains the domains
Input HMI and Vehicle which are taken over as is from the elaborated context
diagram. As you can see from Figure A.3, the name of the machine domain
has been changed to CrCtl SignalEval in order to indicate that the machine
only describes the signal evaluation aspect of the cruise control system.

Figure A.3: Cruise Control - Signal Evaluation (SignalEval 0).
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The requirement R501 (INPUT) shown in the elaborated context dia-
gram (Figure A.2) has been taken over as is:

R501: Depending on the control signals (P Env ControlSignals)
and/or switch-off conditions (P Vehicle), the stored state
(P StateModel StoredState) must change safely and comfortably
to UBAT OFF, INIT, OFF, STANDBY, ERROR, CRUISE, RE-
SUME, RAMP DONW, ACC or DEC and/or the stored target speed
(P SpeedMemory StoredTargetSpeed) must be set or deleted and/or the
timer must be set (P Timer Time).

The set of shared phenomena between domains is exactly the same as in
the elaborated context diagram.

A.5 Elaboration of Subproblems

The last step of the process depicted in Figure 4.2 is to elaborate the sub-
problems identified in step 3 and projected in step 4. Figure A.4 shows an
elaboration of the signal evaluation aspect shown in Figure A.3. As you can
see from Figure A.4, the domain Input HMI has been decomposed into the
domains Pedals, Control Interface and Ignition. The domain Vehicle&Env,
the designed domains Timer, State Model, and Speed Memory have been
taken over as is.

The original requirement R501 shown in Figure A.3 has been decomposed
into the requirements R504 (PEDALS), R505 (CONTROL INTERFACE),
R506 (VEHICLE), R534 (INIT REQ), and R78/R508 (IGNITION). These
requirements state:

R504 (PEDALS): If a pedal signal (P Env ControlSignals PedalSignals)
is set, the stored state is CRUISE, RESUME, ACC, DEC,RAMP DOWN
or STANDBY (P StateModel StoredState), and the clamp15 signal
is set (P Env ControlSignals Cl15), and no error conditions are set
(P Vehicle), the stored state (P StateModel StoredState) must be switched
to R ERROR.
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Figure A.4: Cruise Control - Signal Evaluation (SignalEval 1).
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R505 (CONTROL INTERFACE): If the appropriate control inter-
face signals (P Env ControlSignals ControlInterfaceSignals) are set, the
clamp15 signal is set (P Env ControlSignals Cl15), no switch-off or
error conditions are set (P Vehicle) and no pedal signals are set
(P Env ControlSignals PedalSignals), and the current stored state
(P StateModel StoredState) is OFF, STANDBY, CRUISE, RESUME,
ACC or DEC, the stored state (P StateModel StoredState) must be
changed to either OFF, STANDBY, CRUISE , RESUME, ACC or DEC
and/or the stored target speed (P SpeedMemory StoredTargetSpeed) must
be set, changed or deleted, and/or the timer (P Timer Time) must be set.

R506 (VEHICLE): If any of the error, switch-off, comfort-switch-
off, or vehicle conditions are set (P Vehicle) and the clamp 15
signal is set (P Env ControlSignals Clamp15), the stored state
(P StateModel StoredState) must be switched to state R ERROR,
RAMP DOWN or ERROR. Depending on the switch-off or error condition,
the stored target speed (P SpeedMemory StoredTargetSpeed) must or
must not be deleted. Furthermore, the timer (P Timer Time) must be
refreshed.

R534 (INIT REQ): If the Init request signal is set
(P Env Vehicle InitRequest), the stored state must be switched to
INIT (P StateModel StoredState). In this case, the target speed must be
deleted (P SpeedMemory StoredTargetSpeed).

R78 (IGNITION): If the clamp 15 signal is set
(P Env ControlSignals Cl15) and the stored state
(P StateModel StoredState) is UBAT OFF, the stored state must be
switched to INIT (P StateModel StoredState) and the target speed must
be deleted (P SpeedMemory StoredTargetSpeed).

R508 (IGNITION): If the clamp 15 signal is not set
(P Env ControlSignals Cl15), the stored state must be switched
to UBAT OFF (P StateModel StoredState) regardless of the
current state. In this case the target speed must be deleted
(P SpeedMemory StoredTargetSpeed).

We also have applied the process steps described in Section A.4 and A.5
to the other subproblems, i.e., velocity control and display. Furthermore, we
applied the process steps 3 to 5 iteratively to all elaborated subproblems,
i.e., SignalEval 1, VelocityControl 1, and Display 1, until the cruise control
system had been fully specified.
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Appendix B

Cruise Control - Formal
Specification

In the following sections, we describe the application of the formal specifica-
tion process on parts of the cruise control. The technical steps of the process
are described in Section 4.5

B.1 Abstract Model

Reconsider the abstract context diagram shown in Figure A.1. This context
diagram is mapped to a machine called CrCtl Context 0 and an associated
context called c0 in Event-B. In the context c0 we define types which are
later used in the associated machine CrCtl Context 0. These types are either
defined by using constants or carrier sets. Furthermore, the context is used to
define abstract functions which are later used within events. These functions
are defined using axioms.

For example, in the context c0 we have defined the type T Speed, and
the function F VehicleSpeed as follows:

CONTEXT c0

SETS

T Speed type for vehicle/target speed

CONSTANTS

F VehicleSpeed function for calculating the vehicle speed

CONTROL constant for CONTROL mode of CrCtl
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ACONTROL constant for ACONTROL mode of CrCtl

NOCONTROL constant for NOCONTROL mode of CrCtl

T Mode type for CrCtl mode

AXIOMS

axm1 : F VehicleSpeed ∈ T Acceleration × T Env Vehicle
× T Env ControlSignals × T Speed → T Speed

axm2 : partition(T State, CONTROL, ACONTROL, NOCONTROL)

axm10 : T Mode = {CONTROL, ACONTROL, NOCONTROL}

END

We now show how we modelled the requirement R500 shown in Figure
A.1 in the machine CrCtl Context 0. The requirement R500 shown in Figure
A.1 states:
R500.1: The target speed (P SpeedMemory StoredTargetSpeed) must re-
late to the control signals (P Env ControlSignals) the environment gen-
erates. This relation must guarantee safety (P Para, P Env) and ensure
comfort if possible.

R500.2: Depending on the control signals (P Env ControlSignals)
the stored state (P StateModel StoredState, P StateModel Timer) must
change safely and comfortably (P Env Vehicle, P Para) to CONTROL
—— NOCONTROL —— ACONTROL and/or the stored target speed
(P SpeedMemory StoredTargetSpeed) must be adjusted.

• CONTROL: The vehicle speed must stay to the target speed
(P SpeedMemory StoredTargetSpeed) as close as possible or reach
the target speed (P Speed Memory StoredTargetSpeed) as soon as
possible.

• ACONTROL: The vehicle speed must increase/decrease.

• NOCONTROL: The vehicle speed must not be influenced.

R500.3: At any given time, the output phenomena (P Env Output) must
correctly reflect the target speed (P SpeedMemory StoredTargetSpeed)
and the current state (P StateModel StoredState) of the cruise control sys-
tem.

The first step in formally specifying this requirement in Event-B is to de-
fine the phenomena used and constrained by the requirement in the machine
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CrCtl Context 0 as variables or constants. For each variable we need to de-
fine its type using a type invariant. In case of requirement R500 we made
the decision to model the used and constrained phenomena as follows:

MACHINE CrCtl Context0

SEES c0

VARIABLES

P Env Output variable for environment output

P Env Vehicle variable for vehicle signals

P Env ControlSignals variable for control signals

P Env VehicleSpeed variable for current vehicle speed

P Para variable for external parameters

P CrCtl Display variable for display signals generated by CrCtl

P CrCtl Acceleration variable for demanded acceleration of CrCtl

P CrCtl TargetSpeed variable for stored target speed (corresponds
to P SpeedMemory StoredTargetSpeed)

P CrCtl Mode variable for CrCtl mode

P CrCtl Output variable for CrCtl output

P CrCtl Timer variable for CrCtl timer

INVARIANTS

inv2 : P CrCtl TargetSpeed ∈ T Speed

inv3 : P CrCtl Acceleration ∈ T Acceleration

inv4 : P CrCtl Display ∈ T Display

inv5 : P Env Vehicle ∈ T Env Vehicle

inv6 : P Env ControlSignals ∈ T Env ControlSignals

inv7 : P Env VehicleSpeed ∈ T Speed

inv8 : P Env Output ∈ T Env Output

inv9 : P Para ∈ T Para

inv12 : P CrCtl Mode ∈ T Mode

inv13 : P CrCtl Output ∈ T Env Output



62 APPENDIX B. CRUISE CONTROL - FORMAL SPECIFICATION

inv14 : P CrCtl Timer ∈ T TimeState

END

After having defined variables for the phenomena used and constrained
by requirement R500 we now define the following events which implement
the requirement R500:

Event CrCtl Change Mode =̂
Machine: CrCtl (R500.1)

begin

act1 : P CrCtl Mode :∈ T Mode

act3 : P CrCtl Timer :∈ T TimeState

end

The event CrCtl Change Mode partly fulfills requirement R500.1. It
refers to the second part of requirement R500.1 in which the change of
P CrCtl Mode and the change of the timer is stated. Since the requirement
does not state the new value of P CrCtl Mode we nondeterminstically assign
a value of type T Mode.

Event CrCtl Change TargetSpeed =̂
Machine: CrCtl (R500.1)

begin

act1 : P CrCtl TargetSpeed :∈ T Speed

end

The event CrCtl Change TargetSpeed partly fulfills requirements R500.1
It refers to the first part of requirement R500.1 in which the change of
P CrCtl TargetSpeed. Since the requirement does not state the new value of
P CrCtl TargetSpeed we nondeterminstically assign a value of type T Speed.

The following three events refer to requirement R500.2. They deal with
the three different behaviours of the cruise control based on the current
mode, i.e., CONTROL, ACONTROL, or NOCONTROL. As you can see from
these events, they are all guarded by the P CrCtl Mode variable. For each
case the acceleration demanded by the cruise control (P CrCtl Acceleration)
is calculated by a function which depends on the current vehicle speed
(P Env VehicleSpeed) and the stored target speed (P CrCtl TargetSpeed).
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Event CrCtl Change Acceleration Control =̂
Machine: CrCtl (R500.2)

when

grd1 : P CrCtl Mode = CONTROL

then

act1 : P CrCtl Acceleration :=
F CruiseResume(P Env VehicleSpeed 7→ P CrCtl TargetSpeed)

end

Event CrCtl Change Acceleration AControl =̂
Machine: CrCtl (R500.2)

when

grd1 : P CrCtl Mode = ACONTROL

then

act1 : P CrCtl Acceleration :=
F AccDecRampDown(P Env VehicleSpeed 7→ P CrCtl TargetSpeed)

end

Event CrCtl Change Acceleration NoControl =̂
Machine: CrCtl (R500.2)

when

grd1 : P CrCtl Mode = NOCONTROL

then

act1 : P CrCtl Acceleration := NO ACCELERATION

end

The last cruise control event, namely CrCtl Change Output implements
requirement R500.3:

Event CrCtl Change Output =̂
Machine: CrCtl (R500.3)

begin

act1 : P CrCtl Output :∈ T Env Output

end
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In order to have a full specification we also need to define events for
changing phenomena of the environment. These events simulate the environ-
ment, i.e., reactions of the environment on button presses of the driver and
reactions of the environment on outputs of the cruise control software.

Event Env Change ControlSignals =̂
Domain: Env (simulates control signals generated by the environment)

begin

act1 : P Env ControlSignals :∈ T Env ControlSignals

end

Event Env Change Vehicle =̂
Domain: Env (simulates vehicle internal signals)

begin

act1 : P Env Vehicle :∈ T Env Vehicle

end

Event Env Change VehicleSpeed =̂
Domain: Env (simulates engine control)

begin

act1 : P Env VehicleSpeed := F VehicleSpeed(P CrCtl Acceleration 7→
P Env Vehicle 7→ P Env ControlSignals 7→ P Env VehicleSpeed)

end

Event Env Change Output =̂
Domain: Env (simulates output)

begin

act1 : P Env Output := F VehicleOutput(P CrCtl Output)

end

We also need to define an initialisation event in order to initialize the
variables to well defined values.

Initialisation

begin
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act1 : P Env ControlSignals :∈ T Env ControlSignals

act2 : P Env VehicleSpeed :∈ T Speed

act3 : P Env Vehicle :∈ T Env Vehicle

act4 : P Env Output :∈ T Env Output

act6 : P CrCtl TargetSpeed :∈ T Speed

act7 : P CrCtl Acceleration :∈ T Acceleration

act8 : P CrCtl Display :∈ T Display

act9 : P Para :∈ T Para

act13 : P CrCtl Mode := NOCONTROL

act14 : P CrCtl Output :∈ T Env Output

act15 : P CrCtl Timer :∈ T TimeState

end

B.2 Refinement of Abstract Model

After having specified a first abstract model of the cruise control system we
will now refine this model. We start with mapping the elaborated context
diagram Context 1 shown in Figure A.2 to an Event-B context called c1 and
an Event-B machine called CrCtl Context1. The context c1 hereby refines
the context c0 and the machine CrCtl Context1 refines the abstract machine
CrCtl Context0.

Reconsider the requirements R501, R502, and R503:

R501: Depending on the control signals (P Env ControlSignals)
and/or switch-off conditions (P Vehicle), the stored state
(P StateModel StoredState) must change safely and comfortably
to UBAT OFF, INIT, OFF, STANDBY, ERROR, CRUISE, RE-
SUME, RAMP DOWN, ACC or DEC and/or the stored target speed
(P SpeedMemory StoredTargetSpeed) must be set or deleted and/or the
timer must be set (P Timer Time).
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R502: Depending on the stored state (P StateModel StoredState), the
vehicle speed (P Env VehicleSpeed) must be influenced comfortably and
safely in one of the following ways:

• CRUISE/RESUME: The vehicle speed must stay to the target speed
(P SpeedMemory StoredTargetSpeed) as close as possible or must
reach the target speed (P SpeedMemory StoredTargetSpeed) as soon
as possible.

• ACC/DEC/RAMP DOWN: The vehicle speed must increase or de-
crease.

• UBAT OFF, INIT, OFF, ERROR, R ERROR, STANDBY: The ve-
hicle speed must not be influenced.

R503: Information on the current state of the cruise control system
(P StateModel StoredState) must be provided to the driver and other
ECUs (P Env OutputHMI Output). As long as the cruise control sys-
tem is capable of actively influencing the target speed, the stored tar-
get speed (P SpeedMemory StoredTargetSpeed) must be provided to the
driver (P Env OutputHMI Output). At any given time at which state
and speed information is provided to other ECUs or the driver, the out-
put phenomena (P Env OutputHMI Output) must correctly reflect the
stored state (P StateModel StoredState) and the stored target speed
(P SpeedMemory StoredTargetSpeed).

If you compare the requirements R501, R502, R503 of the elaborated context
diagram with the requirement R500 you see that the instead of the P mode
the requirements now refer to the more concrete state (P StateModel StoredState).
Table B.1 shows the mapping of cruise control modes to cruise control states
again.

In order to achieve this mapping of modes to concrete states in Event-B
we need to do a data refinement of the type of the variable P CrCtl Mode.
First of all, we need to define the values of the concrete cruise control state
as constants in context c1. Furthermore we need to relate the values of the
cruise control mode to the corresponding values of the cruise control state.
This can be achieved by the following axioms in context c1 :

AXIOMS

axm1 : partition(NOCONTROL, {UBAT OFF}, {OFF}, {ERROR},
{R ERROR}, {STANDBY }, {INIT})
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Mode State Description

NO CONTROL

UBAT OFF Ignition is off and engine not running
INIT Ignition is ON and cruise control is be-

ing intialized
OFF Ignition is ON, cruise control has been

initialized and is switched OFF
ERROR An irreversible error has occurred
STANDBY Cruise control has been switched ON
R ERROR A reversible error has occurred

CONTROL
CRUISE Cruise control is maintaining the target

speed
RESUME The target speed is approached from

above or from below

ACONTROL
ACC Cruise control is accelerating the car
DEC Cruise control is decelerating the car
RAMP DOWN Cruise control is being switched off

Table B.1: Modes and states of the cruise control system.

axm2 : partition(CONTROL, {CRUISE}, {RESUME})
axm3 : partition(ACONTROL, {ACC}, {DEC}, {RAMP DOWN })
thm1 : NOCONTROL = {UBAT OFF , OFF , ERROR,

R ERROR, STANDBY , INIT}
thm2 : CONTROL = {CRUISE , RESUME}
thm3 : ACONTROL = {ACC , DEC , RAMP DOWN }

Furthermore we need to define the following invariants in the machine
CrCtl Context1 to make sure that the mapping between the mode and the
states is obeyed by the model:

inv1 : P CrCtl Mode = NOCONTROL
⇔ P CrCtl State ∈ {UBAT OFF , OFF , ERROR,
R ERROR, STANDBY , INIT}

inv2 : P CrCtl Mode = CONTROL
⇔ P CrCtl State ∈ {CRUISE , RESUME}

inv3 : P CrCtl Mode = ACONTROL
⇔ P CrCtl State ∈ {ACC , DEC , RAMP DOWN }
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The the events CrCtl Change Acceleration Control, CrCtl Change Acceleration AControl,
CrCtl Change Acceleration NControl are refined as follows:

Event CrCtl Change Acceleration Control =̂
Machine: CrCtl (R502)

refines CrCtl Change Acceleration Control

when

grd1 : P CrCtl State ∈ {CRUISE , RESUME}
then

act1 : P CrCtl Acceleration :=
F CruiseResume Controller(P Env VehicleSpeed
7→ P CrCtl TargetSpeed)

end

Event CrCtl Change Acceleration AControl =̂
Machine: CrCtl (R502)

refines CrCtl Change Acceleration AControl

when

grd1 : P CrCtl State ∈ {ACC , DEC , RAMP DOWN }
then

act1 : P CrCtl Acceleration :=
F AccDecRampDown Controller(P Env VehicleSpeed
7→ P CrCtl TargetSpeed)

end

Event CrCtl Change Acceleration NoControl =̂
Machine: CrCtl (R502)

refines CrCtl Change Acceleration NoControl

when

grd1 : P CrCtl State
∈ {OFF , UBAT OFF , INIT , ERROR, R ERROR, STANDBY }

then

act1 : P CrCtl Acceleration := NO ACCELERATION

end
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If you compare the abstract events with the refined events above you
notice that guards have been strengthened. They now refer to the variable
P CrCtl State instead of referring to P CrCtl Mode in the abstract machine.

B.3 Decomposition of Refined Model

After having refined the abstract model we now need to decompose the ma-
chine CrCtl Context1 into three different machines, namely SignalEval 0,
VelocityControl 0 and Display 0 (see Figure 4.4). These machines will imple-
ment the three subproblems SignalEval 0, VelocityControl 0, and Display 0
shown in Figure 4.3.

This decomposition is similar to A-style decomposition [Abr09a], i.e., de-
composition of contexts and machines using shared variables. However, we do
not restrict shared variables from being refined in the different parts later on.
We only require that the refinements of a shared variable are the same in dif-
ferent parts. For example, the variable P CrCtl State is shared between the
machine SignalEval 0 and VelocityControl 0. If we now refine P CrCtl State
in machine SignalEval 0 we also need to refine it exactly in the same way in
VelocityControl 0. In our application of the cruise control we tried to mini-
mize the interface, i.e., the number of shared variables between the different
parts of the machine.

As the decomposition of machines and contexts in Event-B follows the
projection of domains and requirements into subproblems we need to look at
the problem diagram shown in Figure A.3 to determine which parts of the
context c1 and which parts of the machine CrCtl Context1 need to be copied
to the decomposed context SignalEval c0 and to the machine SignalEval0.
The resulting machine SignalEval0 after decomposition is the following:

MACHINE SignalEval0

SEES c1

VARIABLES

P Env Vehicle

P Env ControlSignals

P Env VehicleSpeed

P Para

P CrCtl TargetSpeed

P CrCtl Timer
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P CrCtl State

INVARIANTS

invc11 : P CrCtl State ∈ T State

inv2 : P CrCtl TargetSpeed ∈ T Speed

inv5 : P Env Vehicle ∈ T Env Vehicle

inv6 : P Env ControlSignals ∈ T Env ControlSignals

inv7 : P Env VehicleSpeed ∈ T Speed

inv9 : P Para ∈ T Para

inv14 : P CrCtl Timer ∈ T Timer

EVENTS

Initialisation

begin

act1 : P Env ControlSignals :∈ T Env ControlSignals

act2 : P Env VehicleSpeed :∈ T Speed

act3 : P Env Vehicle :∈ T Env Vehicle

act6 : P CrCtl TargetSpeed :∈ T Speed

act9 : P Para :∈ T Para

act15 : P CrCtl Timer :∈ T Timer

actc1 : P CrCtl State := UBAT OFF

end

Event InputHMI Change ControlSignals =̂
Domain: Input HMI (simulates driver related control signals)

begin

act1 : P Env ControlSignals :∈ T Env ControlSignals

end

Event VehEnv Change Vehicle =̂
Domain: VehicleEnv (simulates vehicle internal signals)

begin

act1 : P Env Vehicle :∈ T Env Vehicle

end
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Event VehEnv Change VehicleSpeed =̂
Domain: VehicleEnv (simulates engine control)

any

P CrCtl Acceleration

where

grd2 : P CrCtl Acceleration ∈ T Acceleration

then

act1 : P Env VehicleSpeed := F VehicleSpeed(P CrCtl Acceleration 7→
P Env Vehicle 7→ P Env ControlSignals 7→ P Env VehicleSpeed)

end

Event CrCtl Change State =̂
Machine: CrCtl (R500.1)

begin

act1 : P CrCtl State :∈ T State

end

Event CrCtl Change Timer =̂

begin

act3 : P CrCtl Timer :∈ T Timer

end

Event CrCtl Change TargetSpeed =̂
Machine: CrCtl (R500.1)

begin

act1 : P CrCtl TargetSpeed :∈ T Speed

end

END

If you compare the machine SignalEval0 with the machine CrCtl Context1
you will notice that SignalEval0 only contains those parts of the machine
CrCtl Context1 which are necessary for implementing the problem diagram
shown in Figure A.3.
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B.4 Refinement of Signal Evalaution Model

After having decomposed the model of the cruise control into individual
subsystems we will now show how to refine these decomposed parts us-
ing the signal evaluation subsystem as an example. If you reconsider the
elaboration of the SignalEval 0 (see Figure A.3 into SignalEval 1 (see Fig-
ure A.4), you will see that the domain Input HMI has been splitted into
the domains Pedals, Control Interface, and Ignition. Furthermore, the phe-
nomenon P Env ControlSignals has been decomposed into the phenomena
P Env PedalSignals, P Env ControlInterfaceSignals, and P Env IgnitionSignal.
Therefore, we have to refine the variable P Env ControlSignals into three
variables representing the phenomena above. To achieve this define a new
context called c2 which extends c1 and defines the following sets, constants,
and axioms:

CONTEXT c2 SignalEval1

EXTENDS c1

SETS

T Env PedalSignals

T Env ControlInterfaceSignals

T Env IgnitionSignal

CONSTANTS

AF PedalSignals

AF ControlInterfaceSignals

AF IgnitionSignal

AXIOMS

axm9 : T Env IgnitionSignal = BOOL

axm1 : ((AF PedalSignals⊗AF ControlInterfaceSignals)⊗AF IgnitionSignal) ∈
T Env ControlSignals��T Env PedalSignals×T Env ControlInterfaceSignals
× T Env IgnitionSignal

thm1 : AF PedalSignals ∈ T Env ControlSignals
→ T Env PedalSignals

thm2 : AF ControlInterfaceSignals ∈ T Env ControlSignals
→ T Env ControlInterfaceSignals
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thm3 : AF IgnitionSignal ∈ T Env ControlSignals→T Env IgnitionSignal

END

As you can see from the definitions above the type T Env ControlSignals
is now seen as a record with three tuples, namely T Env PedalSignals,
T Env ControlInterfaceSignals and T Env IgnitionSignal. Thus, we are now
able to use variables of these three types in machine SignalEval1, namely
P Env PedalSignals,
P Env ControlInterfaceSignals, and P Env IgnitionSignals. In order to es-
tablish a refinement relationship of the abstract variable P Env ControlSignals
which is not part of the refined machine SignalEval1 we need to add witnesses
to all events which refine events of the abstract model in which P Env ControlSignals
has been used. For example, in the following event we had to add a wit-
ness because this events refines an event of the abstract model in which
P Env ControlSignals has been changed:

Event InputHMI Change PedalSignals =̂
Domain: Input HMI (simulates driver related control signals)

refines InputHMI Change ControlSignals

begin

with

P Env ControlSignals′ :
P Env ControlSignals′ = ((AF PedalSignals⊗
AF ControlInterfaceSignals)⊗AF IgnitionSignal)−1

(P Env PedalSignals′ 7→ P Env ControlInterfaceSignals 7→
P Env IgnitionSignal)

act1 : P Env PedalSignals :∈ T Env PedalSignals

end

As you can see from looking at the witness it establishes the missing
relationship between the use of P Env PedalSignals in the concrete event
and P Env ControlSignals in the abstract event.
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