VENT)
nnnnnnnnn

Project DEPLOY
Grant Agreement 214158

“Industrial deployment of advanced system engineering methods
for high productivity and dependability”

DEPLOY Deliverable D38

D1.2 Report on Enhanced Deployment
in the Automotive Sector (WP1)

Public Document

31 October 2011

http://www.deploy-project.eu

http://www.deploy-project.eu

Contributors:

Katrin Grau
Rainer Gmehlich
Felix Loesch

Jean-Christophe Deprez

Robert Bosch GmbH
Robert Bosch GmbH
Robert Bosch GmbH
CETIC

Renaud De Landtsheer CETIC
Christophe Ponsard CETIC
Reviewers:

Cliff Jones University of Newcastle
Michael Jastram University of Diisseldorf

Contents

(I _Introduction|

2 Enhanced Deployment)|
2.1 Overviewl.

[3 Methodology|

[3.1 Lessons Learnt from Pilot Deployment{

[3.1.1 Application| . .

[3.1.2 Method/Development Process|

[4 Requirements|

[4.1 Lessons Learnt from Pilot Deployment|

[4.1.1 Consequences for the new approach:|

[4.2 Requirements & Problem Frames Model of SSEf

4.2.1 Problem Frames Model of the S5F

[4.2.2 Requirements for the SSEf

[4.2.3 Tnvariants for the SSEI

[5 Specification|

[5.1 Lessons Learnt from Pilot Deployment|

(5.2 Specification of SSE|. .
[b.2.1 Static Structurel

[.2.2 Dynamic Behaviour|.

[6_Event-Bl

[6.1 Lessons Learnt from Pilot Deployment|

[6.2 Plans for Enhanced Deployment|

[6.2.1 Refinement Strategy|

[6.2.2 Modularization|

11
12
12
13
15

17
17
18
19
20
23
24

27
27
29
29
32

4 CONTENTS

6.2.3 State Machinesl 46

0624 Flowof Eventdo 47
(7__Ewvidence Consolidationl 49
[[1 Reusedssues 49
(7.2 Impact on the System Development Process| 50
[7.3 Known Strengths and Weaknesses of Tools| 51
[7.4 General Modelling Language and System Concepts| 52

8 _Conclusions| 53

(Bibliography| 56

Chapter 1

Introduction

The DEPLOY workpackage WP1 deals with the deployment of formal engi-
neering methods (principally Event-B) in the Automotive Sector. The work
package is lead by Robert Bosch GmbH in close cooperation with the follow-
ing partners:

e Abo Akademi

University of Newcastle

University of Southampton

University of Diisseldorf

ETH Zirich

e CETIC

Our main objectives in WP1 are threefold: (i) the deployment and de-
tailed assessment of formal engineering methods in the context of automotive
system development, (ii) the development of a methodology that is specific
and applicable for automotive systems, (iii) the development of concepts for
adaptation of our development process in order to efficiently use the method-
ology. Our objectives in detail are:

e Provide evidence that refinement-based formal engineering methods are
applicable to Bosch systems. The key priorities for Bosch are:

— Structured development of system requirements and systematic
construction and validation of formal models from requirements

— Effective reuse and evolution of formal models and analysis

5

6 CHAPTER 1. INTRODUCTION

— Provide evidence of the applicability of formal methods to the
development of automotive systems

e Develop a specific methodology for automotive systems and provide
evidence for applicability by close-to-production implementation of rel-
evant parts of the pilot application

e Identify changes to the current development process as well as concepts
for assimilation

In order to achieve these objectives, the following deployment strategy
has been pursued:

e Minipilot: The minipilot is a small Event-B model, focused on specific
aspects (in the case of WP1, modelling of continuous behaviour and
time)

e Pilot: The goal of the pilot is to develop a specific methodology for
automotive systems including an industrial process for formal devel-
opment (necessary for large scale deployment) as well as to provide
evidences for sector acceptance (by developing a close-to-production
implementation of relevant parts of the cruise control system)

e Enhanced deployment: The enhanced deployment will result in the
application of the methodology in the context of other domains having
different characteristics.

The purpose of this deliverable is to describe how lessons learnt from
the pilot deployment helped to improve the methodology for the enhanced
deployment. The application of the methodology to the start stop system
is presented through the different steps of the process and illustrated with
examples.

The remainder of the deliverable is structured as follows: Chapter [2/intro-
duces the enhanced deployment, a start stop system and gives an overview of
its functionality. Chapter |3| presents the methodology used in the enhanced
deployment. In Chapter [4] the requirements phase of the methodology is ex-
plained in detail, followed by Chapter [5|, where the specification phase of the
start stop system is illustrated. In Chapter [6]the plans for the Event-B model
of the enhanced deployment are presented. Chapter [7] describes the contri-
bution of the enhanced deployment to the workpackage WP11 Evidence.
Chapter [§ concludes this deliverable.

Chapter 2

Enhanced Deployment

As mentioned in Chapter [I] the enhanced deployment’s task is applying the
methodology to a system with different characteristics than the pilot de-
ployment to adapt and strengthen the developed methodology. During the
enhanced deployment the methodology of the pilot deployment is not only
applied to a different system, but adapted due to the experiences during the
pilot deployment.

2.1 Overview

For the enhanced deployment in the automotive sector we chose the start
stop system (SSE).

The SSE is a system that helps to save fuel and reduce emissions by turning
the combustion engine off when it is not needed and turning it on again as
soon as it is required.

A typical scenario is stopping at a red light. Usually the engine would keep
running (consuming fuel and producing emissons) although it is not needed
until the light changes to green and the driver continues the journey. If the
driver stops at the red light, changes the gear to neutral and releases the
clutch, the SSE turns the engine off. As soon as the driver presses the clutch
again to change the gear, the SSE starts the engine and the driver can move
forward as usual.

But it is not only the driver who influences the SSE. Revisiting the situation
described before (driver stops at a red light, gear in neutral, clutch released)
the SSE does not stop the engine if the state of charge of the battery is below
a certain threshold.

8 CHAPTER 2. ENHANCED DEPLOYMENT

2.2 Description of the Start Stop System (SSE)

During the enhanced deployment we concentrate only on the software part
of the system. We do not model the whole system which would include e.g.
wearing out. The use of a SSE requires a better starter, a better battery, a
battery sensor, etc.. We assume that these requirements are addressed else-
where. But we have to include the fact that we do not want to constantly
start and stop the engine, but only stop it if it is reasonable to assume that
it will be off for a certain amount of time. This amount of time is not only
influenced by the energy needed to restart the engine but also by the wearing
out phenomena.

The SSE is embedded in surrounding systems (see simplified Figure .
In Section the basic functionality of the SSE was explained. With this
description it is obvious the SSE needs information about the clutch pedal,
the gearbox and the electical energy management (including the battery).

There are three different kinds of systems that interact with the SSE:
1. Input system - a system that provides inputs to the SSE
2. Output system - a system that uses output of the SSE

3. Input/output system - a system that provides input to the SSE as well
as uses outputs of it

| Engine | | Display Lamps

Figure 2.1: System Overview

These systems are highlighted in different colours: Dark blue for input sys-
tems, light blue for output systems, grey for input/output systems.

2.2. DESCRIPTION OF THE START STOP SYSTEM (SSE) 9

The SSE itself (from now on referring only to the software part) consists
of three different parts:

1. A number of subsystems that provide information concerning a single
aspect (e.g. electrical energy management) to the start stop coordina-
tor (SSE coordinator)

2. The SSE coordinator which evaluates all this information and decides
when to stop or start the engine

3. A Human-Machine Interaction (HMI) Display subsystem, which is re-
sponsible to provide information to the driver

Further details will be discussed in the subsequent sections, e.g. in Sec-
tion 4.2, where requirements for the SSE are discussed.

10

CHAPTER 2. ENHANCED DEPLOYMENT

Chapter 3

Methodology

The Deliverable D19 describes the methodology of using Event-B for the pilot
deployment [D19] (see also [D15]). We do not want to repeat this description,
but only emphasize two main issues we address there:

e The development of an Event-B model is only part of the overall de-
velopment process, see the box "DEPLOY WP1” in Figure |3.1

e The gap between the informal (natural language) world and the formal
world (Event-B) is too big to be easily taken in one step, see Figure

The goal of the methodology we used in the pilot deployment was to ease the
development of an Event-B model and to facilitate the integration of formal
methods in the overall development process.

i
e

i

TdM AO71d3da

Figure 3.1: Overall development process - Pilot Deployment.

11

12 CHAPTER 3. METHODOLOGY

[
informal

Tip-up increases the set-

Original Requirements Document
point speed by a differential
natural language speed. This differential

speed can be calibrated.

restructuring, completion,
and disambiguation

signal
evaluation

pre-
formal

overall velocity
context control

display

translation

\/elaboration /

projection

[1 g
m_SignalEval_b
SignalEval_a

—m
m_SignalEval J

formal

stepwise refinement
refinement proofs

correctness by construction

/* check for rising edge of
button declaration */
/*if (SrvB_GetBit(...)!=FALSE) */

{
SrvB_SetBitMask(stTrans...)

Figure 3.2: The deployment approach of WP1 - Pilot Deployment.

3.1 Lessons Learnt from Pilot Deployment

There are several lessons learnt from the pilot deployment we tried to respect
in the enhanced deployment. We will seperate them into three subsections:
application, method/process and tools.

3.1.1 Application

The application for the pilot deployment was the cruise control which is an
embedded real time system including a closed loop controller as an essential
part. With the lessons learnt from the cruise control we chose the SSE as
the second pilot application. Reasons for that are:

First of all the SSE does not include a closed loop controller. During
the pilot deployment we decided to separate the development and modelling
of the closed loop controller from the Event-B modelling/development pro-
cess. This was done because it is obvious that Event-B does not support
the development and/or modelling of closed loop controllers. The separa-
tion between the discrete and the continuous parts (closed loop controller)
was successfull, nevertheless it complicated the requirement engineering (in
which the separation was done) and later on the synthesis between the two
development strands. This separation was done in an ad hoc manner which
needs (if deployed in industry) a deeper investigation how this could/should
be done and therefore a more mature method and tool support. Such a sup-

3.1. LESSONS LEARNT FROM PILOT DEPLOYMENT 13

port is beyond the scope and abilities of the DEPLOY project and might be
a bigger research issue itself.

The second difference between the cruise control and the SSE is the size.
We underestimated the effort (during requirement engineering as well as dur-
ing modelling and proving) we had to spend for the cruise control system.
Due to this and the limited time for the enhanced deployment we chose a
smaller application. Additonally (see tools and method subsection) the size
itself (beyond the restricted resources) introduces problems into the Event-B
modelling and verification.

In summary there are similarities between the two applications:

e big interface with other parts of the engine control
e calculates the driver demands from direct and indirect information

e contains a statemachine with a moderate number of states but compli-
cated conditions

e information to the driver by lamps/display about the current state
and differences:

e SSE is smaller that the Cruise Control

e The main output of the Cruise Control is a torque demand (calculated
by a closed loop controller) compared to two boolean variables of the
SSE.

e SSE contains no closed loop controller

3.1.2 Method/Development Process

In the pilot deployment we used extended Problem Frames [D19] for analysing
the system to produce detailed requirements and a design specification. Fol-
lowing the requirements engineering phase, we started modelling the system
in Event-B, preserving the structure we introduced during the requirements
engineering step. This was done to achieve direct traceabiltiy between the
requirements document and the Event-B model. For the approach taken
during pilot deployment see also Figure |3.2

For the enhanced deployment we changed this development process slighty
taking into account the lessons learnt. In Figure the general approach
for the enhanced deployment is shown. The biggest change is that we in-
troduced an additional step between requirement engineering with Problem

14 CHAPTER 3. METHODOLOGY

I
informal

o"gl nal Req uirements Document If the aircondition is running,
natural language the SSE is not allowed

to stop the engine

Thermal
pre-
formal overall Driver

context Surprise
Car
Damage |
o cnamne |
formal

stepwise refinement
refinement proofs correctness by construction

[* check for rising edge of

button de claration */

/*if (SvB_GetBit(...)!=FALSE) */
{

SrvB_SetBitMask(stTrans...)

Figure 3.3: Development Process

Frames and modelling in Event-B: the specification document. With the
approach taken during the pilot deployment our major issue was to achieve
direct traceabilty between the natural language requirements and the final
Event-B model. We are successful in doing this, but we have to pay a price.
There is a trade-off between traceabiltiy and architecture. In following the
pilot deployment approach you will end up with a model which is traceable
but - from a modelling, proving and maintainability point of view - poor.
Our decision for the enhanced deployment was to use a development process
which is more balanced concerning these different qualities. The solution we
chose is to produce an intermediate document between the Problem Frames
anaysis and the Event-B model. The purpose of this document is to produce
a more solution oriented structure of the system. With the experience of
the pilot deployment in mind, we chose RSML (with some adjustments, see
Section as the language for the specification document. The reason is
that a natural language description of finite state machines is cumbersome.

In Figure the artifacts we are producing during the development of
the SSE are shown. We start with inital requirements written in natural
language. This is the starting point for requirements analysis, done with the
Problem Frames method. The result of this step is a Problem Frames model.
From the Problem Frames model we produce a dedicated requirements doc-
ument (a detailed description of these steps are included in Chapter [4]). The
requirements document and the Probelm frames model are the starting points

3.1. LESSONS LEARNT FROM PILOT DEPLOYMENT 15

=

[y

[—
Initial
Requirements _

Natural
Language

— =
l

Problem

\ RSML

Formal

- -

Figure 3.4: Detailed Development Process

for the system specification (see Chapter |5)). The requirements document is
used for the formalization of the requirements. In this step we try as early as
possible to produce Event-B invariants which we want to prove later on dur-
ing the Event-B modelling. Thinking about Event-B invariants in this early
step is done, because we do not want to include information in the invari-
ants which is related to the implementation. Invariants should be model (or
implementation) independant as far as possible. Based on the specification
document the Event-B modelling is done (see Chapter @

3.1.3 Tools

As mentioned in the section about the enhanced deployment application (see
Section , the size of the application itself is a problem. During the
pilot deployment the performance of RODIN was not satisfactory in dealing
which such big models. There were performance issues related to the pure
editing process (very slow reaction time in editing) and also performance
issues related to the proving interface. As a consequence of this feedback
there was a significant progress in supporting big models. Nevertheless there
are still some missing features related to parallel team development of big
models (e.g. version control) which prevents us from trying again modelling
a application of compareable size.

16

CHAPTER 3. METHODOLOGY

Chapter 4

Requirements

To bridge the gap between the informal natural language requirements and
the formal Event-B model we used an extended version of Problem Frames
during the pilot deployment. For the original Problem Frames approach
see [Jac01]. The extended version and its application to the pilot deployment
are explained in [D19].

4.1 Lessons Learnt from Pilot Deployment

During the pilot deployment there were a lot of lessons learnt (see Sec-
tion . These lessons learnt are used to adapt and improve the methodol-
ogy in the enhanced deployment. In this section we will concentrate on the
lessons that concern the requirements and affect this part of the development
process.

e Traceability: The use of Problem Frames during the pilot deploy-
ment helped us to bridge the gap between informal natural language
requirements and a formal Event-B model. Especially the traceabil-
ity of the requirements in the Event-B model was a challenge and had
to be ensured. The developed Problem Frames model was structured
in different levels of abstraction which were sustained in the Event-B
model. This structure eased the traceability.

e Teamwork: The Problem Frames model was not only stuctured in
different levels but also in different subproblems within one level of
abstraction. This subproblems could be modelled by different members
of the team and merged afterwards.

e Scalability: In addition to this possiblity for teamwork the handling
of the large model of the pilot deployment became easier and the tool

17

18 CHAPTER 4. REQUIREMENTS

was better suited for these smaller models than for the complete model
which merges all subproblems.

e Structure/Architecture: The fact that we used one structure during
the whole development process also has some drawbacks. The structure
is fixed early in the development and it is probably not optimal for
every phase of the development process. If a perfect structure for the
problem analysis has been found (which is not at all certain) it might
not lead to an easy Event-B model or a convenient implementation.
One has to judge if the benefit of having easy traceability is worth
the strict structure. One side-effect of restricting the structure of the
Event-B model to the structure of the Problems Frames is that there
is no dedicated phase to think about design and architecture again.

e Requirements and Specification: The Problem Frames model was
used in the pilot deployment not only for the development and docu-
mentation of the requirements. It was also a specification which was
directly translated into an Event-B model.

4.1.1 Consequences for the new approach:

For the enhanced deployment we decided to have a requirements document
(see Section[£.2.2)), a Problem Frames model (see Section and a speci-
ficiation document (see Chapter [5)) in comparison to just a Problem Frames
model during the pilot deployment (see also Figure in Chapter |3)).

We use Problem Frames for the problem analysis. In addition to the Prob-
lem Frames model a requirments document is produced. The requirements
document is the basis to obtain invariants that can be used in Event-B by
formalizing these requirements (see Section . These invariants are later
used in the Event-B model (see Chapter @ The Problem Frames model
contains already information which is used in the specification document. A
description of the whole development process can be found in Chapter [3]
During the enhanced deployment we decided to use a suitable structure dur-
ing the Problem Frames analysis without constraining the structure for the
following phases. In the requirements document we refuse to assume any
design at all and describe the requirements without using internal variables.

4.2. REQUIREMENTS & PROBLEM FRAMES MODEL OF SSE 19

4.2 Requirements & Problem Frames Model
of SSE

To develop the requirements of the SSE the limitations and borders of the
system have to be clear. We concentrate only on the software part of the
system. A real SSE affects not only the software part of the car. We illus-
trate this with an example:

The engine of a car with a SSE is started and stopped more often than an
engine of a car without a SSE. The starter has to be capable of this additional
requirement. Therefore the development of a complete SSE must include the
requirements for the surrounding systems (see Section . We assume for
the enhanced development that these requirements are treated elsewhere and
concentrate only on the software part.

For both the Problem Frames model and the requirements document assump-
tions have to be made. An example of such an assumption is the following

Every error concerning the vehicle (accident, sensor error,...) is
detected by the error handling of the car.

This assumption ensures that it is enough to include the error handling in
the model of the SSE to address all kinds of errors.

Time and Timing Constraints

Before we illustrate the requirements document, the Problem Frames model
and the invariants, we address one important aspect for all of them. Time
and timing constraints play an important role, but they have to be adjusted
to the different system borders.

In the requirements document and the Problem Frames model time and
timing constraints address real physical phenomena. A (simplified) example
would be

The engine must change the status from off to running within time
t if the battery charging state is below a defined limit Para_Battery.

To fullfill this requirement a sensor has to check the battery charging
state, pass the information to the SSE, the SSE has to check if it is be-
low the defined limit Para_Battery and in this case send an order to start
the engine to the engine control, which has to start the engine, which again
needs some time. For the requirements it is convenient to address the real
world phenomena, but when translating these requirements into invariants

20 CHAPTER 4. REQUIREMENTS

for Event-B timing constraints have to be carefully considered. The Event-B
model only considers the time between the information reaches the SSE and
the output leaves the SSE. Therefore timing constraints have to be adjusted.
Within the SSE time is needed to produce an output according to the in-
put. The events in the Event-B model are ordered and when formulating
the invariant one has to consider this order which depends on the chosen
architecture. This cannot be done before modelling the system in Event-B
but has to be addressed there for further adjustment by including the order
of the events.

4.2.1 Problem Frames Model of the SSE

As mentioned in Section the development of the requirements is done
within the Problem Frames model. The Problem Frames model is then used
as basis for the requirements document (see Section[1.2.2), but contains more
information than what is needed there.

The main part of the SSE is the coordinator itself. The task of the coordina-
tor is to judge if the SSE should send a command to the engine coordinator
to start or stop the engine. The foundation of these commands is information
that is provided to the coordinator by different subsystems only concerning
themselves. So the coordinator has to take into account the different prior-
ities of the subsystems. In fact there are four different types of information
the different systems send to the coordinator:

e Start_Enable
e Start_Request
e Stop_Enable

e Stop_Request

Start_Enable and Stop_Enable of a subsystem declare that this subsystem
has no objection to switching the engine on or off respectively.

Start_Request and Stop_Request of a subsystem declare that this subsystem
wants the engine to be switched on or off respectively.

Please note that not every subsystem must provide all four types of informa-
tion.

In general the SSE coordinator only sends a command to stop or start the en-
gine if all subsystems have send their permission (Start_Enable/Stop_Enable)

and there is at least one subsystem that has requested this change (Start_Request/

4.2. REQUIREMENTS & PROBLEM FRAMES MODEL OF SSE 21

-~ /1107 | L4z
-~
r |
People -/ 4 :
s LB |
Vs T
L3 ; . [
-~ |
Lz LS
SSE Car _{: —_ -3 k1l
L4
L7 -7
-7 L1

SS5E_Model

Figure 4.1: SSE_Context

Stop_Request). But of course there are exceptions.

The most abstract form of the requirement for the SSE is described in
the SSE_Context diagram (see Figure . There is stated what the main
function of the SSE is: To start and stop the engine with certain constraints.
The assumptions the analysis of the problem is based on are documented in
this most abstract diagram.

To further describe these constraints several subproblems are considered in
more detail. These subproblems are Problem Frames projections. All of the
subproblems only describe the situation from their point of view. To be able
to combine them later we decided that each of them refers to a designed
domain which records the information of this subproblem, i.e. if the sub-
problem wants to start or stop the engine or if it gives the permission to do
SO.

One of the projections is about the explicit actions of the driver (see Fig-
ure like turning the steering wheel, pressing the clutch pedal or changing
the gear. With this information it is determined if the driver is stopping the
car for a certain amount of time (which will result in a stop request for the
engine) or if he is preparing to move the car (which will cause a start request
for the engine). The requirement that will be presented later in Section m
is a part of this subproblem.

22 CHAPTER 4. REQUIREMENTS

L126 Steering Wheel 1133
I L1z8
Sarlil_IDl iver_Needs Clutch Pedal L135 Driver3
L130 I

L132 L137 : L138
Gearbox |

BSE Driver Needs_| - _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

HMI_Model << Rl
L1389

Figure 4.2: SSE _Driver_ Needs HMI

After having considered all subproblems in isolation, they have to be
combined again. The SSE coordinator manages all requests and permissions
for the start or the stop of the engine as well as the INIT status of the
ECU. The INIT status prevents the SSE from changing the engine status. It
evaluates all information provided by the subproblems, prioritises them and
decides when to send a request for the start or the stop of the engine.

To summarize the structure of the SSE Problem Frames model three different
kinds of diagrams can be identified:

1. Abstract diagram

2. Diagrams to extract information and to concentrate it in a designed
domain

3. Diagrams to interpret and combine information

These three different kinds of subproblems play different roles in the
model. One of the diagrams of the third kind is the coordinator itself. The
diagrams of the second kind only consider their own needs and problems and
do not care if they are in conflict with other subproblems.

Where is interesting information located?

During the modelling of the SSE the question arose where in the problem
frame diagram interesting information is located. The reason was that for all
the subproblem which determine how the designed domains are structured
the requirements are very similar. Roughly they state something like ”if

4.2. REQUIREMENTS & PROBLEM FRAMES MODEL OF SSE 23

the driver wants to move the car, the variable in the designed domain should
capture that”. The important information about what exactly the driver does
when he or she wants to move the car (which is an abstraction of the reality)
is stated in the domain description of the driver. It was surprising that the
requirements of the SSE itself do not reveal the interesting information about
the system. To understand, build and maintain the SSE the information
within the different domains is crucial. This separation is reflected in the
requirements (see Section .

Another issue was where assumptions in the problem frames diagram would
fit in. We decided to formulate our assumptions in the most abstract diagram
and did not further investigate what happens, if these assumptions are not
true.

4.2.2 Requirements for the SSE

To illustrate the requirements we start with the following abstract description

of the SSE (see also [2.2):
e The driver is allowed to switch the SSE on and off.

e If the SSE is switched on, the system achieves fuel economy by auto-
matically turning the engine on and off.

e [t does so without adversely affecting the behaviour of the car as ex-
pected by the driver.

e [t does this safely.

e The system informs the driver about the current status of the SSE by
lamps.

Some parts are already quite clear, like ”. . . informs the driver about the cur-
rent status of the SSE by lamps”, some parts are vague, e.g. "It does this
safely”. The first example is straightforward to refine: The detailed require-
ment has to state which lamps exist and how the status of the SSE influences
these lamps. Not all internal states expose helpful information to the driver,
but it is a well-defined task. The second example is much more complicated,
as it does not point to a certain part of the system but has to be included in
every aspect.

The next step is a detailed description of the requirements. This step
is combined with the development of a Problem Frames model, which was
explained in Section The requirements from the Problem Frames model

24 CHAPTER 4. REQUIREMENTS

(see Figure [4.2] R16) are the basis for the requirements in the requirements
document, but with the difference that in the Problem Frames model the
combination problem is solved in a separate diagram and internal variables
(designed domains) are used.

An example of a more detailed requirement is the following about the needs
of the driver and its effects for the SSE:

(Driver_Needs_HMI) The SSE is not allowed to change the engine
status from running to off if the driver wants to move the car
(see 1] and [2f for ”driver wants to move the car”).

The obvious question is how to know the wishes of the driver, in this case,
when does the driver want to move the car. This question is deliberatly
addressed separately. The requirement is not referencing sensors, as it is
indeed about the needs of the driver and not about how the system could
know them. To emphazise this even more: If it was possible to have link to
the brain of the driver, one would not bother to use information of e.g. the
pedals. The problem is separated to make the intention of the requirement
clear. The last step is of course to determine how the system detects the
wishes of the driver, which is included in the requirements document as well.
In the Problem Frames model this would be the description of a given do-
main (see also Section [4.2.1, Where is the interesting information located).
In the requirements document this would be listed as additional information
like the following example shows:

The requirement refers to the wish of the driver to move the standing car.

1. If the engine is running and the driver does not want to move the
car, then the steering wheel is not used, the clutch is released and the
gearbox is in neutral.

2. If the engine is running and the driver does want to move the car, then
the steering wheel is used, the clutch is used or the gearbox is not in
neutral.

4.2.3 Invariants for the SSE

The requirements of the SSE are translated to invariants that will be proven
in the Event-B model. The idea is to have invariants before starting mod-
elling the SSE in Event-B. They are captured in a separate document. We
start with an example of such an invariant:

4.2. REQUIREMENTS & PROBLEM FRAMES MODEL OF SSE 25

Driver_Needs_ HMI The SSE is not allowed to change the engine
status from running to off if the driver wants to move the car (see
and |§| for ”driver wants to move the car”).

Engine_Status = Running A
DriverNeedsMoveRunning = T A
Time = Para_Response_Time
=
SSFE_Stop_Order = F
The variable Driver NeedsM ove Running is defined as follows:
Engine_Status = Running = (4.1)
<DriverNeedsMoveRunm’ng =T
~

(Steering Wheel = USED V Clutch_Pedal # RELEASED V
Gearbox # NEUTRAL))

When formulating the invariants we tried to avoid using internal vari-
ables. Internal variables, as the name suggests, contain internal information.
Invariants should describe properties independent of the internal strutcture,
similar to the requirements themselves. This is the illustrated best with an
example. A phrase used in the requirements is ”if the engine was switched
off by the SSE”. This phrase is very difficult to translate to an invariant
in Event-B as it contains information about the past. The current external
information would be engine is off, but not the reason for it. Of course it
is possible to formulate this in terms of external information, e.g. there has
been a request of the SSE coordinator to stop the engine in the past, but it
is very cumbersome, as there is no direct access to this kind of information
and in the past has to be further defined. It is easier to assume that the
SSE keeps track of this information in an internal variable and we use this
variable in the invariant. Please note that we always try to use external
information and only allow the use of internal information if it is justified by
the reduction of effort.

The formulation of the invariants is based on some assumptions. One as-
sumption is the following:

The SSE influences the engine only with the two variables SSE _Start -

Order and SSE_Stop_Order. If they are false, the SSE does not
influence the engine.

The majority of the requirements refer to the status of the engine which
is not part of the SSE. The assumption provides the necessary connection.

26 CHAPTER 4. REQUIREMENTS

Another assumption concerns time and timing constraints and states that
the phrase Time = Para_Response_T'ime used in the invariants is a macro
which has to be adapted in the further development as mentioned earlier in
Section (Time and Timing Constraints).

It is obvious that it won’t be possible to simply copy the invariants in the
Event-B model and prove them. Some adjustment is needed to include nec-
essary information of Event-B model of the SSE. It is important to be aware
of the fact that the invariants do not describe a complete model, e.g. not all
variables are described. They are only part of a formal model and validation
is very important when they are included in the Event-B model.

Chapter 5

Specification

5.1 Lessons Learnt from Pilot Deployment

We learnt many lessons from the pilot deployment of Event-B to the cruise
control system [D19]. During pilot deployment we directly mapped elements
of the Problem Frames Model to Event-B elements. Although this direct
mapping provides good traceability it has several drawbacks which are de-
scribed below:

e Requirements Analysis and Specification During pilot deploy-
ment the Problem Frames model was used as a documentation of both
the requirements and the specification. The problem was that the Prob-
lem Frames approach is better suited for requirements development
than for specification. The Problem Frames approach does not pro-
vide means of describing a specification other than natural language
descriptions of machine domains. Therefore our specification during
pilot deployment had to be written in terms of machine descriptions
that are mainly based on natural language.

e Structure/Architecture The decision we made during pilot deploy-
ment to use the Problem Frames model as a documentation for both
requirements and specification clearly constrained us in the structure,
i.e., the structure of the Problem Frames model dictated the structure
of the specification because the specification was contained within the
model itself. This caused problems when we mapped the structure of
the Problem Frames model to Event-B. The hierarchical structure of
the Problem Frames model we used during pilot deployment was in fact
a stepwise refinement from an abstract design to a concrete design, i.e.,
a specification of the system.

27

28 CHAPTER 5. SPECIFICATION

e Description of State Machines During pilot deployment we had to
specify a state machine for the cruise control system. Each transition
of the state machine was described as a separate requirement in the
Problem Frames model. Sometimes the conditions for a transition in
the state machine were split to more than one requirement due to the
subproblem structure of the Problem Frames model. When we tried
to map that structure to Event-B it became very difficult to under-
stand the resulting Event-B model because the conditions for a single
transition in the state machine were scattered to multiple events in the
Event-B model. Since the Problem Frames approach did not provide
additional means for the specification of state machines we used an
external drawing tool for drawing the states and the transitions. This
meant additional work for synchronizing the conditions on the transi-
tions in the drawing tool with the requirements text in the Problem
Frames model.

e Recombination of Subproblems During pilot deployment we used
the Problem Frames model for solving the recombination problem of
subproblems. Although we managed to recombine the subproblems
after several iterations of constructing different Problem Frames models
we learnt that Problem Frames is in fact not the optimal method for
solving the recombination problem. Problem Frames is very good for
analyzing the requirements but not optimal for writing a specification.

Consequences for Enhanced Deployment

As a consequence of the lessons learnt described above we decided to intro-
duce another process phase for the enhanced deployment, namely the speci-
fication phase (see also Chapter . The input to this phase is the Problem
Frames model and the requirements document (as described in Chapter [4)).
The output of this phase is a detailed specification document describing the
static structure and the dynamic behaviour of the SSE.

In addition to the introduction of the specification phase we decided to
use the Problem Frames model for the description of requirements and as-
sumptions of the environment and not for the description of the specification.
We believe that this strict separation of requirements analysis and specifica-
tion is a better way of dealing with these two important development tasks
before the formal modelling in Event-B.

In the following we will describe the specification of the SSE in more
detail.

5.2. SPECIFICATION OF SSE 29

5.2 Specification of SSE

This section describes the specification approach we used during enhanced de-
ployment. The approach is illustrated by examples taken from the SSE spec-
ification. The specification approach we used has been inspired by the spec-
ification languages RSML [LHHR94] and SCR [HPSKTS, [Hen80, HBGLIS)]
which are dedicated languages for the specification of reactive process control
systems, i.e., embedded systems. These languages are especially suited for
the description of state machines which is why we have selected them for the
specification of the SSE.

We mainly used concepts of RSML [LHHR94] for the specification of the
SSE. However, some of the concepts have been used in different ways than
suggested in the original RSML approach or have been simplified to increase
the understandability of the specification and make the process of writing it
easier.

The specification language RSML provides concepts for the description
of the static structure of the controller and concepts for the description of
its dynamic behaviour. In the following we will explain the concepts in more
detail using examples of the specification of the SSE.

5.2.1 Static Structure

In RSML the static structure of the software system is described using so
called components, i.e., separate encapsulated blocks of the software system.
Each component has an interface definition that describes the inputs and
outputs of the component. Variables with defined types are used for the
description of inputs and outputs.

In order to distinguish these inputs and outputs from the system inputs
and outputs they are referred to as component inputs and component outputs.
Please note, that component outputs of one component can be component
inputs of another component or system outputs. Likewise, component inputs
of a component can either be component outputs of another component or
system inputs.

Figure illustrates the relationship of system inputs, system outputs,
component inputs, and component outputs using a fictious software control
system with two components A and B. As you can see from Figure the
system inputs I are at the same time component inputs of component A (I4)
and the component outputs of B (Op) are system outputs O¢. Furthermore,

the outputs of component A (O4) are at the same time inputs of component
B (Ip).

30 CHAPTER 5. SPECIFICATION

Controller C

Figure 5.1: Controller and its components with inputs and outputs.

Figure [5.2] shows the static structure of the SSE. We also used this struc-
ture in order to structure the specification document.

ECU

SSE Software System

SSE Coordinator
HMI
Display

Figure 5.2: Static Structure of SSE

5.2. SPECIFICATION OF SSE 31

As you can see from Figure the SSE consists of three different classes
of components (input modules, SSE coordinator, and HMI display). The
input modules are responsible for generating stop requests, stop enable,
start requests and start enable signals for the SSE coordinator. The SSE
coordinator is responsible for calculating the overall stop or start order
taking the request and enables as an input. The HMI Display is responsible
for producing information for the driver, signaling the current status of the
SSE. The engine coordinator is not part of the SSE. It provides informa-
tion about the current status of the pysical engine for the SSE coordinator
and is responsible for taking care of start and stop order produced by the
SSE coordinator.

Example: In order to illustrate the specification of component inter-
faces we will use the input component dealing with conditions when to start
or stop the car such that the driver will not be surprised. The purpose of
this component is to compute the two outputs Driver_Surprise_Strt_Ena and
Driver_Surprise_Stop_Ena based on several inputs (for description of the in-
put signals see Section [5.2.2)):

Driver Surprise

Inputs
The component Driver Surprise has the following inputs:

e Clutch_Pedal : [RELEASED | PRESSED_10 | PRESSED_90]
e Gearbox : [NEUTRAL | NOT_NEUTRAL]

Outputs
The Driver Surprise has the following two outputs:

e Driver_Surprise_Strt_Ena : BOOL

e Driver_Surprise_Stop_Ena : BOOL

Internal Variables
none

Sometimes it may be necessary for a component to define so called in-
ternal variables. An internal variable of a component is only used inside
the component and cannot be used as an input for other components. An

32 CHAPTER 5. SPECIFICATION

internal variable is an auxiliary function defined on input variables, states or
other internal variables. Internal variables thus help to make the specification
concise. Instead of writing the conditions on input variables in many places
inside the component (e.g. for the specification of transition conditions) one
can use the internal variable instead. In SCR [HPSKT7S] an internal variable
is referred to as a term whereas in RSML [LHHRO4] internal variables are
called macros or functions. Internal variables are modelled in the same way
as output variables, i.e., one needs to write an assignment specification for
internal variables (see Section [5.2.2)).

The specification is not yet complete since we have not stated the dynamic
behaviour of the component, i.e. the relationship between the values of the
outputs and the values of the inputs.

5.2.2 Dynamic Behaviour

RSML provides several concepts for the description of the desired dynamic
behaviour of the software system (respectively its components). We have
used and extended these concepts. In the following we describe the basic
concepts and our extensions in more detail.

AND/OR Tables

In RSML the values of controller outputs are described by conditions on the
controller inputs (respectively the values of component outputs are described
by conditions on the component inputs). A condition is a predicate logic
statement over one or more system elements, i.e., a variable or a state of a
state machine.

One possibibility to specify these conditions is to simply use a propo-
sitional logic notation with A and V (e.g. ((z > 0) A (y < 1))) However,
the inventors of RSML discovered that the conditions for specifying the re-
lationship between inputs and outputs are often complex not in the logi-
cal operators used but in the number of different conditions. To overcome
this problem RSML uses a tabular representation in disjunctive normal form
(DNF) that is called AND/OR tables for the specification of the conditions.
This concept is easier to handle than a long list of conditions in propositional
logic and has been used successfully for the specification of the Transition
Collision Avoidance System (TCAS).

Example: Table shows an AND/OR table. The far-left column of
the AND/OR table lists the logical phrases. Each of the other columns is a
conjunction (logical AND) of those phrases and contains the logical values
of the expressions. If one of the columns is true, then the table evaluates to

5.2. SPECIFICATION OF SSE 33

true. A column evaluates to true if all of its elements match the truth values
of the associated predicates. A dot denotes "don’t care”.

X>Y T|F |e
A<B T|F |e
S=PRESSED ||e | T | T
Y = ON e (o | T

Table 5.1: AND/OR Table

This table evaluates to true in the following cases:
L. (X>Y)AN (A< B))Vv

2. ((X<Y)AN(A>DB)AN(S=PRESSED))V

3. (§S=PRESSED)AN(Y =0ON)

Assignment Specifications

An assignment specification describes the assignment of values to an output
variable or an internal variable of a component based on certain conditions
on the input variables or other internal variables. In order to describe these
conditions an AND/OR table is used (see above for a detailed explanation
of AND/OR tables).

Example: The following table shows the assignment specification for the
output variable Driver_Surprise_Strt_Ena of the component handling driver
surprise. The conditions of the input variables are described by an AND/OR
table.

Assignment: Driver_Surprise_Strt_Ena

Condzition: k

Clutch_Pedal = PRESSED 90
Clutch_Pedal = PRESSED_10
Gearbox = NEUTRAL

Action(s): Driver_Surprise_Strt_Ena := TRUE

| = e

Condition: —k

34 CHAPTER 5. SPECIFICATION

Action(s): Driver_Surprise_Strt_Ena := FALSE

The assignment specification states that the output variable Driver_-
Surprise_Strt_Ena is assigned the value TRUE iff the input variable Clutch_Pedal
is pressed by more than 90 percent (PRESSED_90) and the input variable
Gearbox is NOT_NEUTRAL or iff the Clutch_Pedal is pressed by more than
10 percent and less than 90 percent (PRESSED_10) and the Gearboz is NEU-
TRAL. The output variable Driver_Surprise_Strt_Ena is assigned the value
FALSE iff the conditions that were specified for the TRUE case do not hold.

State Machines

The desired dynamic behaviour of a component can be described by a state
machine if a direct assignment specification of the outputs of the component
is too complicated. For the specification of the SSE we used state machines
in a similar way but in a simpler form than defined by the RSML specifica-
tion language [LHHR94]. For our purposes a state machine consists of states
connected by transitions. States have a unique name and a descriptive com-
ment that describes the state. Transitions define how to get from one state
to another. A transition is guarded by one or more conditions and may or
may not have an associated transition action.

A state machine of a component is modelled as an internal or output
variable with an enumerated set as a type. Each state of the state machine
is represented as a member of this enumerated set.

Example: In the following we show the state machine for the engine
coordinator an external component of the SSE which coordinates the engine.
The state machine of the engine coordinator has the following states:

e ENG_OFF

e ENG_CRANKING

e ENG_RUNNING

e ENG_STOPPING
We modelled the states as an enumerated set with the values ENG_OFF,
ENG_CRANKING, ENG_RUNNING, and ENG_STOPPING. A state vari-

able Engine_State with the enumerated set as a type has been used to model
the state machine itself.

5.2. SPECIFICATION OF SSE 35

Transition Specification

As with all state-machine models, transitions between states are governed
by conditions on inputs and the current state of the modelled system. A
transition usually has some actions, i.e., assignments to values. In RSML
[LHHR94], a transition is also guarded by a triggering event which can be
used to order the execution of transitions in parallel state machines. However,
in order to keep our specification as simple as possible we have decided not to
use triggering events. Instead of triggering events we use an explicit separate
description of the execution order of assignments and transitions which is
described below.

In many state-machine models the state machine is depicted graphically.
Typically the states are shown as boxes and arrows represent the possible
transitions between the states. This is also the standard representation for
Mealy automatons. The guarding conditions under which the transitions
are taken and the transition actions are usually written as labels on the
transition arrows. However, if the guarding conditions and transition actions
are complicated and very long, the graphical state machine diagram will get
easily cluttered and it will become more difficult to understand the state
machine.

In order to solve this problem, RSML |[LHHR94] and SCR [HPSKT§]
use tabular notations for describing the guarding conditions and transition
actions in addition to the graphical depiction of the state machine. In SCR
so called mode transition tables are used to specify the transition conditions.
RSML |[LHHR94] uses AND/OR tables for the specification of transition
conditions.

Since we have made similar experiences with complicated conditions and
actions in our case studies we decided to use the RSML approach with
AND/OR tables for the specification of transition conditions for the SSE.

Example: Figure[5.3|shows the state diagram for the engine coordinator.
Instead of writing the conditions directly as labels on the transition, each
transition is labelled with a unique transition identifier (sO to s6 in our
example). The conditions and actions for each transition are specified using
an AND/OR table.

The following transition specification shows the guarding conditions and
transition actions for transition s1 from state ENG_OFF to ENG_CRANKING
and the self-transition ssI.

Statemachine: Engine Coordinator
State: ENG_OFF

36 CHAPTER 5. SPECIFICATION

ENG_CRANKING ’
- ss3

s3
ENG_RUNNING >
ss2
% s4
ss4

ENG_STOPPING

Figure 5.3: State Diagram for Engine Coordinator.

ENG_OFF ’

Transition: s1l: ENG_OFF — ENG_CRANKING

Condition: c2

Ignition T
SSE_Start_Order

Action(s): None

[
H

Transition: ssl: ENG_OFF — ENG_OFF

Condition: —c2

Action(s): None

The transition specification states that the engine state changes from
ENG_OFF to ENG_.CRANKING iff the Ignition is TRUE or SSE_Start_Order
is TRUE. These conditions are denoted by c2. In all other cases denoted
by —¢2 the engine state stays ENG_OFF, i.e., iff Ignition is FALSE and
SSE_Start_Order is FALSE.

5.2. SPECIFICATION OF SSE 37

Execution Order

Whereas RSML |[LHHR94|] uses triggering events to explicitly specify the
evaluation order of parallel state machines, we used a separate specification
of the execution order in which the assignments and state machines are ex-
ecuted. In RSML, an assignemnt or transition of a state machine is not
executed until an explicit event is generated. When the assignment or tran-
sition is executed, additional events may be generated as actions. In this
way, the events propagate through the system triggering assignments and
transitions in different components.

In our specification of the SSE we did not use events for ordering as-
signments or transitions of state machines. Instead of specifiying events, the
execution order of assignments and transitions of state machines is deter-
mined by an execution order specification which is a mandatory specification
element for each component. Each assignment and state machine of the
component must be ordered with regard to the other assignments and state
machines of the component using the following syntactic ordering constructs

e Parallel Operator (||): the assignments/state machines conjoined by
this operator can be executed in parallel or in any possible sequential
order

e Sequential Operator (.): the assignments/state machines conjoined by
this operator must be executed sequentially (left first)

Execution of a state machine means that one of the associated transitions of
the state machine is taken.

Example: The component driver surprise of the SSE calculates start
enables and stop enables based on conditions that will not surprise the driver,
i.e., a start enable or stop enable is only issued if the driver will not be
surprised. The component has assignment specifications for the following five
variables SSE_Max_Veh_Speed_Since_Strt, SSE_Max_FEng_Speed_Since_Strt,
SSE_Mode_Prev, Driver_Surprise_Strt_Ena, and Driver_Surprise_Stop_Ena.
The execution order for these assignments is specified as follows.

Order: [SSE_Max_Veh_Speed_Since_Strt ||
SSE_Max_Eng_Speed_Since_Strt| .
SSE_Mode_Prev .
[Driver_Surprise_Strt_Ena ||
Driver_Surprise_Stop_Enal]

This order states, that the assignments to SSE_Max_Veh_Speed_Since_Strt
and SSE_Max_Eng_Speed_Since_Strt are executed in parallel, before the as-
signment to SSE_Mode Prev, before the parallel assignments to Driver -
Surprise_Strt_Ena and Driver_Surprise_Stop_Ena.

38 CHAPTER 5. SPECIFICATION

Similarly to the specification of the execution order of assignments and
state machines we can also specify the execution order of components. We
simply use the same syntax as for the specification of the execution order of
assignments and state machines.

Example: The SSE consists of a number of different components (see
Figure . The input modules can all be executed in parallel but must be
executed before the SSE coordinator. The execution order for the compo-
nents of the SSE can thus be specified as follows:

Order: | Input Modules || HMI Display | . SSE_Coordinator

Time

In the specification of the SSE we also had some conditions that were based
on the time that had elapsed since a specific state of a state machine had been
entered. We decided not to use the concept of timers for specifying time.
Instead we used a concept of RSML [LHHR94]. In RSML, an implicit global
time is available which can be referred to by the greek letter 7. In order
to measure the time that has been elapsed since a specific state has been
entered, we record the point in time at which the state has been entered.
This is referred to as 7(entered_state(state)). One can now compare the
current global time 7 with the point in time at which a specific state has
been entered.

Example: In the SSE we had to specify conditions under which a stop-
ping of the car does not surprise the driver. One of these conditions was
that the start stop system is only allowed to stop the car if the engine has
been running since a minimum time Para_Min_Time_Since_SSE_Start. We
modelled this condition as follows:

Assignment: Driver_Surprise_Stop_Ena

Condition: |

7 > (7(entered state(SSE_.OPERATION)) + T
Para_Min_Time_Since_SSE_Start)

Action(s): Driver_Surprise_Stop_Ena := TRUE

Condition: —l

Action(s): Driver_Surprise_Stop_Ena := FALSE

5.2. SPECIFICATION OF SSE 39

As you can see from this assignment specification we compare the global
time 7 against the point in time at which the state SSE_OPERATION (engine
running) has been entered plus Para_Min_Time_Since_SSE_Start, i.e., the
variable Driver_Surprise_Stop_Ena is assigned the value TRUE iff more than
Para_Min_Time_Since_SSE_Start has elapsed since the state SSE_OPERATION
(engine running) has been entered.

40

CHAPTER 5. SPECIFICATION

Chapter 6

Event-B

6.1 Lessons Learnt from Pilot Deployment

During pilot deployment we went from the Problem Frames Model to an
Event-B model without an intermediate specification. We directly mapped
Problem Frames elements to Event-B elements and used data refinement in
Event-B. Details of our Event-B modelling approach for pilot deployment are
described in the DEPLOY deliverable D19 [D19]. We learnt the following
lessons with regard to Event-B. Some of these lessons are also described in a
paper that will be presented at ICFEM 2011 |[GGH™11]:

e Refinement Strategy Event-B supports horizontal (superposition)
and vertical (data) refinement. Both refinement strategies can be used
in an Event-B model. Typically, horizontal (superposition) refinement
is used for augmenting the model with additional events and variables
whereas vertical (data) refinement is used to refine abstract data types.
We started with an abstract model containing abstract data types and
abstract events corresponding to the abstract context diagram in our
Problem Frames model. We then applied vertical refinement to make
those abstract data structures more concrete. Although Event-B in
principle supports vertical refinement, we had difficulties in finding
the best way to do the vertical refinement. In the end we used a
special form of instantiation of abstract data types for modelling the
relationship between abstract and concrete types. Since this special
form of instantiation was not directly supported by the RODIN tool
we had to manually add axioms to the context that were both difficult
to understand and cumbersome to maintain. The lesson we learnt
during pilot deployment was that RODIN is better suited for horizontal
refinement than for vertical refinement.

41

42

CHAPTER 6. EVENT-B

e Modularization The Problem Frames model we built for the case

study for pilot deployment contained several subproblems on different
abstraction layers (see deliverable D19 for details [D19]). The sub-
problems in our Problem Frames model were linked by elaboration
and projection operations. We wanted to map this structure to the
Event-B model. Although we were able to model the different abstrac-
tion levels of our Problem Frames model using Event-B refinement it
was very difficult to model projections of subproblems with Event-B
means. Besides refinement Event-B and the RODIN tool provide very
little additional structuring mechanisms. Especially a clear modular-
ization concept found in many programming languages and even in
classical B is missing in Event-B. The decomposition approaches and
the modularization approach provided by RODIN plugins were also not
suited for our needs. Finally, we had to manually split Event-B ma-
chines into separate machines, independently refine these machines and
later combine them to achieve what we had modelled in the Problem
Frames model. Again this was only possible with a lot of manual and
hard work. The lesson we learnt from this was that we need to care-
fully investigate ways of structuring our Event-B model for enhanced
deployment.

State Machines The Problem Frames model of the case study used for
pilot deployment contained a large state machine. The transitions of
this state machine were stated as requirements in the Problem Frames
model. Due to the structure of our Problem Frames model which con-
sisted of different subproblems the requirements of the state machine
were not located in a single place. Our Event-B model closely followed
the structure of our Problem Frames model. Each requirement de-
scribing a required transition of the state machine was modelled as a
separate Event-B event. Sometimes a requirement only described part
of the conditions required for a transition because the other conditions
were described in a different subproblem or several transitions. This
resulted in consistency problems between the different machines in our
Event-B model. In the end consistency between machines was only
made possible by a lot of manual and hard work. The lesson we learnt
was that modelling state machines in Event-B is not an easy task and
requires careful thinking of how the transitions of the state machine
should be modelled. Especially one needs to think about how refine-
ment and modelling of state machines play effectively together. Ideally
there should be dedicated tool support for modelling state machines in
Event-B.

6.2. PLANS FOR ENHANCED DEPLOYMENT 43

e Flow of Events The execution semantics of Event-B does not pre-
scribe a strict order in which the events are executed. The execution
semantics of Event-B defines that events whose guards are true can be
taken. If the guards of more than one event are true one event is chosen
non-deterministically for execution. However, the system we modelled
for pilot deployment required a strict ordering of events. In oder to
make the model deterministic we added auxiliary variables in the last
refinement step to the events that define a strict order. This step was
necessary because we wanted to prove reactive properties of the system,
i.e. properties that involve a sequence of events. The flow plugin [wik]
provided by the RODIN tool helped us to graphically specify a desired
order of the events and later prove that this desired order is possible.
Counter examples generated by the ProB plugin helped us to fix the
model in cases in which proof obligations generated by the flow plugin
could not be proven because of bugs in the model. One of the problems
we faced during pilot deployment was that the flow POs got very big
since we introduced them in the last refinement step. The lesson we
learnt was that the flow of events should be introduced earlier in the
process.

6.2 Plans for Enhanced Deployment

Our plans for enhanced deployment are based on our experiences with Event-
B during pilot deployment and take the lessons learnt described in the pre-
vious section into account. In the following we will describe these plans in
more detail and discuss the advantages and disadvantages.

6.2.1 Refinement Strategy
Description

For enhanced deployment we plan to use the traditional Event-B horizontal
refinement strategy in which the development starts with a very abstract
Event-B model and details are added gradually by refining this abstract
model. For the SSE we plan to start the Event-B modelling with an abstract
version of the SSE coordinator. This abstract model contains only events
that assign values to the outputs of the SSE. The following listing shows
this abstract Event-B model which contains two events without guards that
nondeterministically assign values to the two main outputs of the SSE.

44 CHAPTER 6. EVENT-B

An Event-B Specification of m0
Creation Date: 10 Aug 2011 @ 03:23:32 PM

MACHINE m0
VARIABLES
SSE_Start_Order
SSE_Stop_Order
INVARIANTS
invil : SSE_Start_Order € BOOL
inv2 : SSE_Stop_Order € BOOL
EVENTS
Initialisation
begin
actl: SSE_Start_Order .= FALSE
act2 : SSE_Stop_Order .= FALSE

end
Event Change SSE_Start_Stop_Order =
begin
actl: SSE _Start_Order :€ BOOL
act2: SSE_Stop_Order :€ BOOL
end
END

In further refinements more and more details are added to the model.
These refinements include the introduction of new variables, guard strength-
ening of existing events, and the introduction of new events. Figure[6.1|shows
an exemplary refinement chain using horizontal refinement and four Event-B
machines named m0 to m3.

A 4

A 4

A 4

mO ml m2 m3

Figure 6.1: Horizontal Refinement Chain

For subsequent refinement levels two different strategies are possible:

1. Add abstract events for all other modules and then gradually refine
these abstract events

6.2. PLANS FOR ENHANCED DEPLOYMENT 45

2. Add one module per refinement level

In the first strategy one would add abstract events for all input modules
(see Figure and then refine these events by making them more concrete.
In the second strategy one would start with one component shown in the
component diagram of the specification and then add the other modules in
subsequent refinement steps. Since these modules are independent there is no
strict order in which each component must be introduced during refinement.

Discussion

Our refinement strategy closely follows the horizontal refinement strategy
provided by Event-B. The main advantage of this refinement strategy is that
the method and the RODIN tool support that strategy very well. However,
the horizontal refinement strategy does not address the problem of modular-
izing the Event-B model. In each refinement level more and more variables
and events are added to the model. In the end the model will become very
big and difficult to understand and handle. Another problem with horizontal
refinement is that it is not obvious how team-work can be supported, i.e.,
multiple persons working on the same model. For example, it is not obvious
how to prepare later refinements independent of the more abstract machines.
This is a clear disadvantage of the horizontal refinement strategy.

6.2.2 Modularization

Overview

Another Event-B modelling strategy besides horizontal refinement is to in-
dependently model components of the specification as separate Event-B ma-
chines and later combine them. As we have described in Chapter [5| the
components of the SSE communicate via shared variables, i.e., components
have inputs and outputs and the outputs of some components are inputs of
other components. This type of communication should also be used in the
Event-B model, i.e., a main model that communicates with other Event-B
modules using shared variables.

We analyzed whether we could use the modularization plugin to support
our planned modularization strategy. However, the modularization plugin for
RODIN uses a different concept for communicating between modules and the
main model. Instead of using shared variables the modularization plugin pro-
vides so called interfaces that can be used to model pre- and post-conditions
of functions. The main model is allowed to call functions of the module and
receives return values that can be used in assignments to variables.

46 CHAPTER 6. EVENT-B

Discussion

The modularization strategy has the advantage that each component de-
scribed in the specification can be modelled independently of the other mod-
ules. This is a clear advantage over the horizontal refinement strategy in
which later refinements need to have the abstract model as a reference, i.e.,
it is very cumbersome to prepare later refinements in isolation and later in-
tegrate them into the refinement chain. In other words, the modularization
strategy is clearly better suited for team development than the horizontal
refinement strategy.

However, a big disadvantage of the modularization strategy is that cur-
rently there does not exist tool support for our strategy. The modularization
plugin provided for the RODIN tool currently only supports function calls
as a mechanism for communicating between modules and the main Event-B
model.

6.2.3 State Machines

Overview

For enhanced deployment, i.e., the modelling of the SSE, we plan to use
the new Event-B statemachine plugin (see [wik]). This plugin allows the
modeller to graphically draw a state machine using boxes representing states
and arrows representing transitions between these states. The plugin also
supports hierarchical state machines and Event-B refinement. The graphical
state machine can be translated into Event-B. Each state is hereby modelled
as a separate boolean variable named by the state which is set to TRUE
when the state is entered and set to FALSE when the state is exited.

Discussion

The advantage of using the Event-B statemachine plugin over manually mod-
elling state machines in Event-B is that it provides a graphical visualization of
the state machine. During pilot deployment we often had difficulties validat-
ing whether the modelled events corresponded to the requirements because
both were only available in textual form. For example, it was very difficult
to check whether all transitions for a given state had been correctly modelled
in Event-B. Another advantage of using the Event-B statemachine plugin is
that it also supports animation of state machines using ProB. We believe that
the use of the Event-B statemachine plugin helps to solve the problems we
encountered in manually modelling state machines during pilot deployment.

6.2. PLANS FOR ENHANCED DEPLOYMENT 47

6.2.4 Flow of Events

As described in Chapter [4] the invariants we want to prove of our SSE model
involve reactive properties, i.e., a sequence of events. In order to model that
in Event-B we require a strict ordering of events. We plan to use the new
version of the flow plugin [wik| for enhanced deployment. This new version
supports a graphical specification of a desired order of events and automati-
cally generates the required auxiliary variables for the Event-B model as well
as proof obligations that show that the model fulfills the desired order of
events.

Discussion

The advantage of using the new version of the flow plugin over the old version
is that it automatically generates the auxiliary variables. This alleviates the
tedious task of validating whether the manually added auxiliary variables
correctly model the graphically specified flow of events. We believe that
the new version of the flow plugin will make the process of defining a strict
ordering of events for our SSE model easier.

48

CHAPTER 6. EVENT-B

Chapter 7

Evidence Consolidation

During the enhanced deployment new contributions were identified to enrich
the evidence repository and the associated industrial FAQ (Frequently Asked
Questions). These were jointly discussed between CETIC and Bosch. This
chapter summarised the main contributions which are related to first, reuse
concerns, second, impact on the system development process and third, tool
support.

7.1 Reuse issues

R-EA-1: When using a formal method efficiently, does it become
more natural to design generic, reusable components than when
using non formal methods?

The second pilot being studied during the enhanced deployment phase is a
start and stop system. About reuse, there were no model artefact reused from
the first pilot (cruise control) given the systems are quite different (closed
loop controller vs input/output controller). The reuse considered here is at
the process level.

Consequently, there is currently no evidence of model artefact reuse. How-
ever model reuse could be considered in the automotive domain between more
similar systems for example the cruise controller and the speed limiter.

R-PQAM-1: Does the potential of reuse increase when formalism
is used efficiently?

At the process level, the answer is yes: Bosch reused the methodology
that was developed for the first pilot with some additional improvements to

49

20 CHAPTER 7. EVIDENCE CONSOLIDATION

cope with identified limitations.

The methodology is based on a progressive formalisation approach from
requirements expressed in natural language to requirements expressed as
problems frames and then to formal models in Event-B. In order to im-
prove the transition to Event-B, an additional formalism based on RSML
(Requirements State Machine Language) was introduced. This allows ana-
lysts to better specify state and transition-based systems. Previously finite
state machines had to be directly traced from natural requirements to Event-
B resulting in poor maintainability. With RSML finite state machines can
now be specified in an explicit formalism before being translated in Event-B.

7.2 Impact on the System Development Pro-
cess

CIF-HM-2: How do organizational procedures used in various sys-
tem development life cycle processes need to be adapted when
formal methods are introduced?

When deploying formal methods in the automotive sector, it was really
important to design a method enabling a progressive formalisation process.
A large effort was devoted to designing an approach to a gradual introduction
of formalism during the first pilot. This approach could extensively be reused
during the second pilot with some improvement (see R-PQAM-1 on reuse).

The main drivers for adapting the development procedure are the follow-
ing:

e Introduce formalism progressively using an intermediate semi-formal
notation not requiring an expertise in formal methods.

o Identify key properties early. Those will typically results in invariants
and generate proof obligation at the most formal level.

e Preserve traceability between the informal, the semi-formal and the
formal models.

e Enable teamwork on large models
EM-PQAM-2: Does the use of a formal engineering model have

any beneficial effect on requirements and design traceability?

In the case of the automotive pilot and enhanced pilot, the answer is a
clear yes.

7.3. KNOWN STRENGTHS AND WEAKNESSES OF TOOLS 51

About requirements quality, the development process deployed at
Bosch is converging towards a development process using increasingly formal
notation throughout the development process described in Figure

The process described is however not a cascade process but can result
in iterations. The benefit of each formalisation step is to discover poten-
tial ambiguities, incompleteness, inconsistency and trigger corrections of the
previous models, resulting in better requirements. Evidence of quality im-
provement was already documented presented during the first pilot and is
also expected at the end of the enhanced deployment. At this point the
enhanced deployment is not yet finished, the final assessment and integra-
tion deliverable (D43/JD3) will report about the benefits of the methodology
developed in the automotive sector.

About requirements traceability, being able to trace requirements
down to the Event-B model was a challenge and had to be ensured. The
developed Problem Frames model was structured in different levels of ab-
straction which were sustained in the Event-B model. This structure eased
the traceability.

During the enhanced deployment, the introduction of RSML as domain
specific language resulted in a richer and more structured traceability with
respect to finite state machine requirements. However this extra level of
specification is also increasing the effort required to build and maintain the
global traceability.

7.3 Known Strengths and Weaknesses of Tools

TOOL-EA-1: How reliable are the tools supporting a particular
formalism? Are they able to carry their tasks without crashing
and causing additional delays? Do they often corrupt their data,
incurring additional hidden costs?

As mentioned in the chapter about the enhanced deployment application
(see Chapter [3.1.1)), the size of the application developed by Bosch was ini-
tial a significant problem. During the pilot deployment the performance of
RODIN was not satisfactory in dealing with large models. There were per-
formance issues related to the mere editing process (very slow reaction time
in editing) and also performance issues related to the proving interface. As
a consequence of this feedback there was a significant progress in supporting
large models, although improvement is still needed. The tool development
process is now adapted to integrate performance testing during the qualifi-
cation phase of the release process.

52 CHAPTER 7. EVIDENCE CONSOLIDATION

Nevertheless a number of important features not directly related to veri-
fication but still very important for industrial adoption are not yet addressed
well enough; those are related to: configuration management, version man-
agement, variant management, and team development.

7.4 General Modelling Language and System
Concepts

G-EA-1 - What important system concepts (such as real time, con-
currency, fault tolerance, probabilities, continuous behaviour, fi-
nite/infinite instances) can be handled ”elegantly” with a selected
formal method?

Considering Event-B, this formalism has shown limitations to model con-
tinuous behaviour (e.g. closed loop controller) and real-time constraints
which are needed in the automotive sector. Other complementary formalisms/
tools should be considered to reason on those aspects. The complexity and
overhead of managing extra formalisms and tools must also be taken into
account.

Chapter 8

Conclusions

During pilot deployment we were focused on finding a solution for bridging
the gap between the informal and formal world. We used (an extended
version of) the Problem Frames method for requirments engineering to solve
this problem. Our main issue was to preserve the traceability between natural
language requirements and the final formal model in Event-B. By doing this
we also increased the quality of our requirements. Beside the success we had
with this approach, we also identified some drawbacks or open issues. During
the enhanced deployment we try not only to repeat the previous developed
method (this would have been an option if everything was perfect). Our goal
was to reuse steps or methods which work well and try out alternatives in
the cases we identified problems.

In the enhanced deployment we changed our development process by in-
troducing a dedicated specification document written in a tailored version
of RSML. Also we introduced an identification and (Event-B) specification
of invariants. The results of these steps are a better support of good design
and systematically deduced invariants which are independant of the concrete
model. To achieve this we move our focus away from traceability towards
design.

There are several overall conclusions (taking into account both the pilot
and enhanced deployment) about Event-B and the WP1 work itself.

Cloosed loop controller There is no practible way of modelling closed
loop controller in Event-B. This is a complete open field with lot of
research. One of the main questions is, is it useful to try this and if yes
how could this be done.

Time Time was from the very beginning an open issue and is still. In the
embedded systems market there is a strong need to include at some
point during the development a notion of time.

23

54 CHAPTER 8. CONCLUSIONS

Gap between informal and formal world We had made encouraging progress
in the WP1, which gives us confidence that this problem is (or could
be) solved. What is needed here is more experience in applying the
developed methods and strong tool support.

Formal modelling We made significant progress in formal modelling indus-
trial size applications. Beside the progress especially the cruise control
application exposed the borders of formal modelling and the tools sup-
port for formal modelling in RODIN. There is room for improvement.

Industrial development process There is an open issue left in support-
ing state of the art industrial development processes. Especially the
supporting processes (configuration managment, variant managment,
team development, version managment) are not (or not good enough)
supported by RODIN.

To conlcude the last deliverable in the responsability of WP1, we (the
main authors of Bosch) want to use the opportunity to thank all the people
which made contributions to the work and success of WP1 and the DEPLOY
project itself.

Bibliography

[D15]

(D19

[GGH*11]

[HBGLOS]

[Hen80]

[HPSKTS]

[JacO1]

[LHHRO4]

DEPLOY Deliverable D15: Advances in Methodological WPs.
http://www.deploy-project.eu/pdf/D15final.pdf.

DEPLOY Deliverable D19: D1.1 Pilot Deployment in the Au-
tomotive Sector WP1. http://www.deploy-project.eu/pdf/D19-
pilot-deployment-in-the-automotive-sector.pdf.

Katrin Grau, Rainer Gmehlich, Stefan Hallerstede, Michael
Leuschel, Felix Loesch, and Daniel Plagge. On the difficulty of

fitting a formal method in practice. In 13th International Con-
ference on Formal Engineering Methods (ICFEM 2011), 2011.

Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce
Labaw. SCR*: A toolset for specifying and analyzing require-
ments. In Computer-Aided Verification, 10th Annual Conf., pages
109-122, 1998.

Kathryn Heninger. Specifying Software Requirements for Com-
plex Systems: New Techniques and Their Application. [EEE
Transactions on Software Engineering, 6(1):2-13, January 1980.

Kathryn L. Heninger, David L. Parnas, John E. Shore, and
John W. Kallander. Software requirements for the A-7e aircraft.
Technical Report 3876, Naval Research Lab., Washington, D.C.,
1978.

Michael Jackson. Problem Frames: Analyzing and structuring

software development problems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon D. Reese. Requirements specification for process-control sys-
tems. IFEFE Trans. Softw. Eng., 20:684-707, September 1994.

95

26 BIBLIOGRAPHY

[wik] Event-B Wiki. http://wiki.event-b.org/.

	Introduction
	Enhanced Deployment
	Overview
	Description of the Start Stop System (SSE)

	Methodology
	Lessons Learnt from Pilot Deployment
	Application
	Method/Development Process
	Tools

	Requirements
	Lessons Learnt from Pilot Deployment
	Consequences for the new approach:

	Requirements & Problem Frames Model of SSE
	Problem Frames Model of the SSE
	Requirements for the SSE
	Invariants for the SSE

	Specification
	Lessons Learnt from Pilot Deployment
	Specification of SSE
	Static Structure
	Dynamic Behaviour

	Event-B
	Lessons Learnt from Pilot Deployment
	Plans for Enhanced Deployment
	Refinement Strategy
	Modularization
	State Machines
	Flow of Events

	Evidence Consolidation
	Reuse issues
	Impact on the System Development Process
	Known Strengths and Weaknesses of Tools
	General Modelling Language and System Concepts

	Conclusions
	Bibliography

