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1. Introduction 
This deliverable reports on the Final Assessment and Integration Results in deployment work 
packages WP1-WP4. It consists of four chapters prepared by the project deployment partners 
(Bosch, Siemens, Space Systems Finland and SAP) in cooperation with the technology providers.  
 
These chapters complement the previous deployment deliverables (D38, D39, D41, D42) by 
offering general summaries of the deployment activities conducted by the four deployment 
partners; the material here focuses on assessing the levels of deployment achieved and provides 
detail on the integration of the project results in the development processes (for systems and 
software) of the deployment partners. 
  
These chapters address the issues related to achieving the following major project outcomes 
stated in the DEPLOY DoW: 

- Each industrial partner will achieve real deployment of formal engineering methods and 
tools in development of products 

- Each industrial partner will become self sufficient in the use of formal engineering 
methods within the lifetime of the project 

- The deployments will enable us to provide scientifically valuable artefacts including 
o Formally developed dependable systems 
o Results of systems analysis including a rich repository of models, proofs and 

other analysis results 
- The deployments will also enable us to provide a thorough assessment of formal 

engineering methods through 
o Evidence of productivity and dependability impact from deployment 
o Assessment of the tools and methods 
o Collecting experiences both positive and negative 

- By extending the mathematical foundations of formal methods we will deliver research 
advances in complex systems engineering methods that enable 

o High degrees of reuse 
o High degrees of dependability 
o Effective systems evolution that maintains dependability 
o Modelling and analysis of real time systems 

- By building on the existing Rodin tools platform we will deliver a professional open 
development platform based on Eclipse that 

o Provides powerful modelling and analysis capabilities 
o Is highly usable by practising engineers 
o Is tailored to sector-specific engineering needs 

- Through the experience and insights gained in the industrial deployments we will deliver 
strategies that enable the integration of formal methods and tools with existing sector-
specific development processes 

- We will deliver training material and courses covering general and sector-specific formal 
engineering methods. 
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2. The Automotive Sector 

2.1. Deployment Strategies 
In WP1 several requirements models, specifications and Event-B models were developed during 
the lifetime of DEPLOY. The following three sections (Sections 2.1.1-2.1.3) give a short 
description of how the deployment strategy was separated into three phases whereas Section 2.1.4 
gives a short overview of the methodology used in WP1 which was developed during the 
DEPLOY project. 

• Minipilot: The minipilot is a small Event-B model, focused on specific aspects (in the 
case of WP1, modelling of continuous behaviour and time) to make project members 
familiar with Event-B 

• Pilot: The goal of the pilot is to develop a specific methodology for automotive systems 
including an industrial process for formal development (necessary for large scale 
deployment) as well as to provide evidence for sector acceptance (by developing a close-
to-production implementation of relevant parts of the cruise control system) 

• Enhanced deployment: The enhanced deployment will result in the application of the 
methodology in the context of other domains which have different characteristics to make 
sure the methodology is not specific to the pilot application's characteristics only. 

2.1.1. Minipilot 
Applications realised in the automotive environment tend to be complex and distributed over 
hard- and software. The idea of the minipilot thus was to capture a manageable, yet typical 
element of the pilot application to demonstrate the concepts and functional range of Event-B. 
With switches and buttons being typical elements of the interface between the cruise control 
system and the driver, we started with a simple on/off switch as well as a button. Later, a three-
way and an n-way switch were added. Apart from being simple, yet typical, elements of a cruise 
control system, the modelling of switches and buttons requires a simple time model. The time 
aspect is important in virtually all automotive applications. 
 
During the minipilot the project members at Bosch became familiar with Event-B and addressed 
special aspects of an automotive application. 

2.1.2. Pilot Deployment 
For pilot deployment within WP1 we chose the cruise control system, an automotive system 
implemented in software which automatically controls the speed of a car. The cruise control 
system is part of the engine control software which controls actuators of the engine (e.g. injectors, 
fuel pumps, throttle valve) based on the values of specific sensors (e.g. gas pedal position sensor, 
air ow sensor, lambda sensor). Since the cruise control system automatically controls the speed of 
a car there are some safety aspects to be considered and it needs to fulfil a number of safety 
properties. For example, the cruise control system must be deactivated upon request of the driver 
or in case of a system fault. 
 
In the pilot deployment a methodology for applying Event-B was developed (see Section 2.1.4 
and [D19] for details). The central aspect of the developed methodology was that the gap between 
the initial requirements document and the Event-B model is too big to be easily taken in one step. 
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Therefore we used Problem Frames [J01] between the informal and the formal description of the 
system. 
 

2.1.3. Enhanced Deployment 
For the enhanced deployment in the automotive sector we chose the start/stop system. The 
start/stop system helps to save fuel and reduce emissions by turning the combustion engine off 
when it is not needed and turning it on again as soon as it is required. A typical scenario is 
stopping at a red light. Usually the engine would keep running (consuming fuel and producing 
emissions) although it is not needed until the light changes to green and the driver continues the 
journey. If the driver stops at the red light, changes the gear to neutral and releases the clutch, the 
start/stop system turns the engine off. As soon as the driver presses the clutch again to change the 
gear, the start/stop system starts the engine and the driver can move forward as usual. But it is not 
only the driver who influences the start/stop system. Revisiting the situation described before 
(driver stops at a red light, gear in neutral, clutch released) the start/stop system does not stop the 
engine if e.g. the state of charge of the battery is below a certain threshold. 
 
During the enhanced deployment we took into account the lessons learnt of the pilot deployment 
and adapted the development process by introducing an additional step between requirements 
engineering and formal modelling (see Section 2.1.4 and [D38] for details). 

2.1.4. Development Process 
In this section we give a short overview of the development process which is described in more 
detail in [D19] and [D38]. Figure 2.1 shows that development of an Event-B model is only a part 
of the overall development process (see the grey box labelled DEPLOY WP1). 
 

 

Figure 2.1. Overall development process - Pilot Deployment 
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Figure 2.2 presents the WP1 methodology developed during the DEPLOY project in more detail. 
The gap between the informal (natural language) world and the formal (Event-B) world is too big 
to be easily taken in one step and therefore was divided into several smaller steps. We added two 
intermediate phases: Problem Frames and System Specification with RSML [LHHR94]. For a 
detailed description of these steps see [D19] and [D38]. 
 

 

Figure 2.2. Development Process 

 

2.2. Deployment Assessment 
Three different aspects are addressed in this section: 

1. The quantitative results of applying our requirements engineering method during the pilot 
deployment 

2. The results concerning the specification and formal modelling 
3. The results concerning the gathered proof obligations in the Event-B model 

2.2.1. Requirements 
Figure 2.3 shows the quantitative results of applying our requirements engineering method to the 
cruise control system. On the x-axis the total effort in working hours is shown. On the y-axis four 
curves are plotted. The first curve shows the total number of requirements as a reference. This 
curve changes over time due to the addition of new requirements (shown in a separate curve) and 
the rejection of original requirements (shown in the third curve). 

In total we ended up with nearly half the number of text units (requirements) needed to describe 
the required functionality of the cruise control system. Thus, by applying our requirements 
engineering method, we were able to reduce the total number of text units (requirements) by more 
than 40 percent. The total effort we spent on the restructuring and improvement of the 
requirements amounts to approximately 300 working hours. 
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The evaluation results clearly show that by applying our structured requirements engineering 
method the understandability and coherency of the requirements can be increased while at the 
same time the total number of requirements can be reduced by more than 40 percent. 
Furthermore, our concept of hierarchical requirements allows us to differentiate between a 
complete requirements set on a system level and a more detailed requirements set on a functional 
level. 

As a result of this we do not always expect to reduce the number of requirements by 40 percent. 
But we are convinced that we are usually able to reduce the number of requirements and to 
increase the quality in the same step. 

For more details about the pilot deployment see [D19]. 

 

Figure 2.3 Quantitative Results – Requirements 

2.2.2. Specification and Formal Modelling 
During pilot and enhanced deployment both systems were formally modelled with Event-B. 
During pilot deployment (cruise control) the Problem Frames model was taken as input for the 
formal specification in Event-B. Although we provided a mapping between problem frame 
elements and Event-B elements the formal modelling phase itself took around 4 months. The 
formal modelling phase consisted of translating the requirements stated in problem frames into 
Event-B models. Due to the different structure of the Problem Frames model and the Event-B 
model and the missing support for an architectural design in Event-B this process took 
considerable time. 

In order to speed up the formal modelling phase and to close the gap between the informal and 
the formal world, we decided to introduce another phase between requirements development in 
Problem Frames and formal modelling in Event-B, namely specification. During specification the 
requirements stated in the problem frame diagrams were modelled using RSML, a notation for 
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state machines. Using this notation the effort for formal modelling in Event-B could be reduced 
from 4 months (120 days) to 6 weeks (45 days). Parts of this reduction have been made possible 
because the complexity of the formal modelling task was reduced to a task of simply translating 
the state machines described in RSML into Event-B events. 

Figure 2.4 shows a comparison of the required effort for formally modelling the cruise control 
and the start/stop system. On the y-axis the total effort for formal modelling in Event-B is shown. 
This effort only includes the part of developing the formal model in Event-B and does not include 
the effort required for proving invariants and other properties of the model. As you can see from 
Figure 2.4 the required effort for modelling the start/stop system was only 45 days whereas the 
cruise control system required approximately 120 days for formal modelling. This increase in 
productivity was partly due to the fact of the introduction of the specification phase. 

For more details about specification with RSML and formal modelling with Event-B see [D19] 
and [D38]. 

 

Figure 2.4. Quantitative Results - Formal Modelling 
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2.2.3. Proof Obligations 
In the second application (start/stop system) we started not with a requirement set, we developed 
the needed requirements by ourselves. We did not produce a comparable chart to the one for the 
cruise control system. In the second pilot we were more interested in gathering evidence that the 
proof obligations, which arise using Event-B, are manageable. 

In Figure 2.5 the absolute number of proof obligations (4215) for the start/stop system model is 
shown. From these 4215 PO (proof obligations) the majority was proven automatically. 425 have 
to be proven manually. 

Figure 2.6 shows a more detailed view on the 425 manual proofs. 400 of them are very easy 
(needed time < 1min), 12 of them are medium (needed time < 1h). 13 of the manual proofs are 
difficult (needed time > 1h). This evaluation shows that it is in principle feasible to prove a 
system of the size of the start/stop system. 

For more details about enhanced deployment see [D38]. 

 
 

Figure 2.5. Quantitative Results - Automatic vs. manual proof obligations 
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Figure 2.6. Quantitative results - Distribution of manual proof obligations 
 
 

2.3. Assessment of method and tools 
The Rodin platform has made big progress during the runtime of DEPLOY. These improvements 
of the platform itself and the development of several plug-ins according to our needs is a success. 
Especially the reaction time of the tool development team to the industrial needs was very good 
and is a good example of the collaboration of industrial and academic partners. Beside these very 
positive aspects, Rodin itself still needs further improvement to be considered mature enough for 
industrial use. In the following two sections several aspects in which improvement is needed are 
listed. Section 2.3.1 concentrates on issues related to tools, Section 2.3.2 lists methodological 
aspects. 

2.3.1 Tools 
Performance 

There is a big progress in performance aspects. Nevertheless during the modelling of the start 
stop system we still run in performance limitations of the tool. Keeping in mind the relative small 
size of the start stop system (compared to other industrial applications) the performance is not 
good enough. Further improvement is needed. 
 
Stability 

With stability issues we have nearly the same experience as with performance. There has been big 
progress, which is very good, but improvement is still needed. During the modelling of the 
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start/stop system we had several system crashes. System crashes in a production environment are 
not acceptable. The stability of the Rodin platform itself is very mature, but in addition with 
several plug-ins the stability decreases significantly. 

Team development 

Due to prioritisation of other topics there is progress in support of team development, but not 
enough. Parallel development is not possible (or only in an ad hoc manner). Versioning of proofs 
is not possible. 

Proof Obligations 

Most of the proof obligations generated by Rodin were either discharged automatically or could 
be easily proven manually. This is a very promising result as we expected the proofs to be more 
difficult and time-consuming. 

2.3.2 Method 
Architecture 

This is one of the biggest drawbacks of Event-B and Rodin. There is no significant support of 
architecture in Event-B itself and therefore also in Rodin. Model refinement is not a sufficient 
replacement for model decomposition and the supported decomposition/modularization 
possibilities were not suited for our needs. 

Time 

Event-B has no support for modelling time. With the flow plug-in we are able to specify the order 
of events which can be seen as an abstraction of time. This is encouraging progress but not 
sufficient. 

 

2.4 Training 
The training and documentation material was incomplete at the beginning of the DEPLOY 
project especially as new plug-ins emerged which also need documentation, tutorials, etc. But as 
there were enough Event-B experts involved in the project, questions could be asked directly. 
Although the project members at Bosch were not familiar with Event-B at the beginning of the 
project we achieved a good level of experience in applying Event-B and were able to gain a high 
degree of autonomy. 

We emphasized on several occasions the importance of good documentation (to make knowledge 
transparent and available) and as a reaction to this feedback the project spent considerable effort 
to improve documentation. Nevertheless the support of a community with expertise in different 
aspects of Event-B and Rodin (e.g. prover configuration, manual proofs, refinement strategy) 
must not be underestimated as well as the benefit of having experts supporting the education in 
comparison to solely relying on documentation. 

 

2.5 Conclusions 
This section discusses the overall conclusions (taking into account both the pilot and enhanced 
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deployment and therefore the experience of 4 years working with Event-B) about Event-B and the 
industrial use of Event-B. 

Closed loop controller. There is no practical way of modelling closed loop controllers in Event-
B and therefore it is not possible to prove properties about continuous behaviour. This is a 
completely open field with the need for lot of research. One of the main questions is: is it useful 
to try this and if yes how could this be done? 

Time. Time was from the very beginning an open issue and is still. In the embedded systems 
market there is a strong need to include at some point during the development a notion of time. 
Including ordering of the events (cf. the flow plug-in developed at Newcastle University) is a first 
step to address this problem. 

Gap between informal and formal world. We made encouraging progress in WP1, which gives 
us confidence that this problem is (or could be) solved. What is needed here is more experience in 
applying the developed methods and strong tool support. As mentioned in Section 2.2 we were 
able to increase the quality of the requirements by applying Problem Frames as well as by 
formally proving invariants in Event-B. 

Formal modelling. We made significant progress in formal modelling of industrial size 
applications. Beside the progress, especially the cruise control application, exposed the borders of 
formal modelling and the tools support for formal modelling in Rodin. There is room for 
improvement. 

Flexibility. The Rodin tool is flexible enough to be adjusted to different needs via the 
development of plug-ins. For example the flow plug-in (see [Ili11]) helped us to graphically 
specify a desired order of events which was necessary to prove important properties of our 
system. 

Industrial development process. There is an open issue left in supporting state of the art 
industrial development processes. Especially the supporting processes (configuration 
management, variant management, team development, version management) are not (or not good 
enough) supported by Rodin. 

Scalability. Rodin does not scale with large applications. There is work left related to 
decomposition (architecture), performance and stability. 

Taking these conclusions into account, Event-B is a promising method for industrial use 
especially in the embedded market. For a full deployment the listed open issues have to be solved. 
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3. The Transportation Sector 
These are the abbreviations used in Chapter 3. 

Abbreviation  Definition 
ATPF Full Automatic Train Protection 

ATC Automatic Train Control 

ATO Automatic Train Operation 

ATP Automatic Train Protection 
ATPR Automatic Train Protection Restricted manual mode 

ATS Automatic Train Supervision 

Automaton State machine 

CBTC Communication Based Train Control 

CC Carborne Controller 

EB Emergency Braking 

EdithB Tool developed by STS, that automatically generates 
refinements of a B model 

EFS Equipment Functional Specification 

FMEA Failure Mode and Effects Analysis 

FSA Functional Safety Analysis 

FTA Fault Tree Analysis  

HMI Human-Machine Interface  

IXL Interlocking 
MAL Movement Authority Limit 

NV Non Vital 

PHA Preliminary Hazard Analysis 

RAMS Reliability, Availability, Maintainability, Safety 

SAS System Architecture Specification 

SIL Safety Integrity Level 
SRS System Requirements Specification 

STS Siemens Transportation Systems 

TO Train Operator 

V Vital 

Vital Safety critical 

ZC Zone Controller 
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3.1. Realised deployments 
In the DEPLOY project context, for the first time, Siemens tried to define a process using Event-
B in modelling Transportation Systems. As Siemens has considerable experience of applying 
formal methods to software components of railway systems, for DEPLOY the challenge is to 
raise this to the level of overall systems in order to address system safety. Siemens has been using 
B method for more than 15 years, and a considerable investment has been made in tools and 
methods. In particular, an automatic refinement tool (Event-B) has been developed to allow the 
(almost) automatic production of the concrete B model from the abstract B model. It is therefore 
important that the use of Event-B at the system level does not impose new investments at the 
software level.  

For this purpose, Siemens defined a process including Event-B for the Transportation Systems 
development. This process was applied to carry-out minipilot and pilot prototypes of the CBTC 
“manage operating modes” function. By developing minipilot and pilot prototypes, it appeared 
quite quickly that probabilities had to be added in the model. An experiment has been performed 
on the minipilot to add probabilities, with success. The realisation of minipilot and pilot gave us a 
confidence that a large scale Event-B development is feasible with the proposed process. 

Another achievement is related to the integration of ProB in the data validation of CBTC 
controller software component which is still problematic for every deployment of CBTC systems 
on site. The old process based on Atelier B revealed several drawbacks, in particular with huge 
data properties. The motivation is therefore to automate the proof on huge data properties with 
alternative technologies. Siemens was interested in ProB because this tool provides services to 
deal with B properties in order to animate and model check B models. The success story with 
ProB improves significantly the data validation process at Siemens. It does not require B experts 
to carry out data validation. Indeed, the B experts are required only in case of problem, whereas 
in the former process, B experts were required in any case, for long and fastidious tasks. In 
addition, using ProB significantly reduces the time checking data properties: from 2 or 3 days 
with Atelier B to 2 or 3 hours per project. 

3.2. Results of the Minipilot and Pilot Deployment 
The aim of the minipilot and pilot prototypes was to bring evidence that an Event-B development 
at industrial scale is feasible, following the defined process. 

The minipilot aim was to quickly face some modelling issues (timing, probabilities), without too 
much development workload. This minipilot helped to find out that probability is required for 
system modelling, and that timing issues related to input/output of controllers (that seems to be a 
very low level problem) has an impact at the higher system level. 

Indeed, by developing minipilot and pilot prototypes, it appeared quite quickly that proving safety 
(or availability) properties without any failure is pointless, since in that case we can only prove 
that the system is safe, provided nothing wrong happens! 

It is therefore needed to model failures. But then, some proof obligations (safety properties after a 
failure) cannot be discharged any more. To prove these properties, it appeared that probabilities 
had to be added in the model. An experiment has been performed on the minipilot to add 
probabilities, with success with one machine. 

3.2.1. Comparison between Lifecycle with/without Event-B 
An eventual adoption of Event-B life cycle at Siemens implies many changes. Below we show a 
comparison between lifecycle with/without Event-B. 
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Development: 

  Classical B Event-B 

SRS/SAS document Yes Yes 

EFS document Yes Yes (automaton) 

Refinement Plan No Yes 

Software specification 
document 

Yes No 

Event-B model No Yes (translated from 
automatons + manual ) 

Abstract B model Manual translated from Event-B 
model 

Concrete B model generated by EdithB generated by EdithB 

New EdithB rules required 

Ada-PSC code Translated 

(except base machines,  

manually written) 

Translated 

(except base machines,  

manually written) 

 

With Event-B, one document has to be written in a different manner (EFS will be mainly 
automatons, instead of natural language). Automatons are already used (scarcely) in EFS, so this 
notation is already used and understood by system engineers. 

With Event-B, the software specification document is suppressed, and the refinement plan is 
added: in both cases, these documents (written in natural language with possibly pseudo-B 
notations) support the modelling work. 

With Event-B, there is no need to write the abstract B model anymore (since it is translated from 
the Event-B model), but of course, it is required to write the Event-B model.  

Validation 

  Classical B Event-B 

PHA Yes (PHA document) Yes (PHA doc + model) 

FSA on EFS Yes (FSA document) Yes (FSA document + model) 

FSA on SWRS Yes No 
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FMEA optional Automatic generation,  

need to be reviewed 

Traceability tables Yes (manual) Yes (automatic) 

Proof of Event-B model No Yes 

Animation at system level impossible Yes (no simulator required) 

Abstract B model analysis Yes No 

analysis of basic machines Yes Yes 

Proof of classical B model Yes Yes 

Functional test Yes (all functions) Yes (for functions not 
animated)  

 

With Event-B, the scope of the Functional Safety Analysis on the Equipment Functional 
specification is larger, since it includes the analysis of the EFS and the Event-B model analysis. 
However the equivalent extra work at the software level (abstract B model analysis) is 
suppressed. 

3.2.2. Event-B Deployment and Open Issues 
Below is a list of open issues relating to an eventual deployment of Event-B in an industrial 
development of Transportation Systems.  

Standards 

The applicable standards at software level (CENELEC EN 50128) mention that formal methods 
(and in particular B) are "highly recommended" for safety critical software and specification, but 
no process or activities are described to define how to use formal methods. At system level, 
formal methods are not mentioned at all. This means that there is currently no informative or 
normative chapter about formal methods in Cenelec Standards, and a railway industrialist has to 
define a process that is acceptable to both the customer and certification bodies. 

Training system engineers on Event-B 

In the DEPLOY context at Siemens, Event-B models have been created by software engineers 
who have very little knowledge at system level. It seems that to get attention of system engineers 
on Event-B is still problematic. In the one hand, they do not want to change their working way. In 
the other word, they all think that formal method is very hard to learn.  

Probabilities and Failures 

As said earlier, in order to model a transportation systems, it is needed to model probabilities in 
the model. Our approach to model probabilities as a global variable P work well with an Event-B 
specification without refinement, however, it can not work with a model composed of several 
refinement levels. So the modelling and reasoning about probabilities are still open issues for an 
eventual deployment of Event-B in the transportation system development. 
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Visualisation of differences between Event-B machines/projects 

One aspect of an Event-B development is to validate Event-B models wrt. SRS, refinement plan 
or EFS. We often need to validate that the changes in Event-B models respect the modifications 
made in SRS, RP and EFS.  

Tool validation 

This point is very important, indeed Rodin and its plug-ins (Event-B model decomposition, 
Event-B model generation, UML2B, the prover plug-ins and the associated tactics) will have to 
be validated in order to get confidence from industrial bodies who intend to use it in an industrial 
development. 

3.3. Deployment of ProB at Siemens  
In order to evaluate the feasibility of using ProB for checking the topology properties, Siemens 
sent the STUPS team at the University of Düsseldorf the models for the San Juan case study on 
the 8th of July 2008. There were 23,000 lines of B spread over 79 files, two of which were to be 
analysed: a simpler model and a hard model. 

In order to handle the B models sent by Siemens, several improvements on ProB have been 
realised, in particular the Parser and the Type Inference. Several new data structures are 
implemented in ProB as well. Such improvements enable ProB being scaled up to Siemens case 
studies. 

A complete animation of San Juan case study on 8th December 2008 revealed four errors that 
Siemens had uncovered themselves by manual inspection. Note that the STUPS team were not 
told about the presence of errors in the models (they were not even hinted at by Siemens), and 
initially STUPS believed that there was still a bug in ProB. The manual inspection of the 
properties took Siemens several weeks (about a man month of effort). Checking the properties 
takes 4.15 seconds, and checking the assertions takes 1017.7 seconds (i.e., roughly 17 minutes) 
using ProB 1.3.0 on a MacBook Pro with 2.33 GHz Core2 Duo.  

3.3.1. Railway Data Validator  
In the first experiments, ProB was used instead of Atelier B, on the same IVP (Invariant 
Validation Project), with great success. But the creation of IVP was still problematic, with few 
atomizations. 

Each IVP is an encoding of a specific wayside configuration data in B; this is required in order to 
validate the configuration data against the formal properties in the generic B project. 

The goal was to create a tool that could automatically generate the B projects (containing 
assertions machines), run ProB on created B projects, and collect the result in a synthesis report. 
In addition, this tool should not work only on ZC (Zone Controller) data, but also on CC 
(Carbone Controller) data which were not formally validated before the use of ProB. Indeed, in 
the CC software development, the topology data are contained in textfiles and loaded “on the fly” 
by the CC software component when needed. Therefore, in order to enable the CC data 
validation, the macros in definition files are derived from topology text files instead of Ada 
programs. Such macros are then merged with variables defined in basic invariant machines to 
assertion machines for the segment in question. 
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RDV is a new tool realized by Siemens. Via a graphical interface, RDV provides following 
services:  

IVP Generation: this function generates an IVP for a sub-section in case of ZC or a segment in 
case of CC. The generated IVP is almost ready to be used by ProB or Atelier B. Indeed, we still 
need some manual modifications related to properties of non-function constants, however, in 
comparison with the former tool, it reduces significantly manual modifications on generated B 
machines. In addition, with the file selection function based on regular expression, RDV enables 
the generation of a subset of assertions machines (i.e., only machines with modifications). 
Moreover, the automation of CC IVP creation is a great help for safety engineers as there are 
about several hundreds IVP to be created (one project per segment). 
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ProB Launch: RDV enables users to parameterize ProB before launching it. ProB is called on 
each assertion machine in order to analyse the assertions contained in each machine. It does not 
require B experts to carry out data validation. Indeed, the B experts are required only in case of 
problem, whereas in the former process, B experts were required in any case, for long and 
fastidious tasks. In addition, using ProB significantly reduces the time checking data properties: 
from 2 or 3 days with old tool to 2 or 3 hours per project with RDV. The analyse of CC assertion 
machines with ProB reduces significantly the interaction with user as one does not need to launch 
Atelier B several hundreds times on created CC IVP. 

Assertion-Proof Graph Generation: This function provides a graphical way to investigate the 
proof on an assertion. This is based on a service provided by ProB to compute values of B 
expressions and the truth-values of B predicates, as well as all sub-expressions and sub-
predicates. This is very useful because users often want to know more about the exact source why 
an assertion fails. This was one problem in the Atelier B approach: when a proof fails it is very 
difficult to find out why the proof has failed, especially when large and complicated constants are 
present. 

Validation Synthesis Report: The results of analysis realized by ProB on assertions machine are 
recorded in a set of .rp and .err files (one per B component and per sector/segment). Each rp 
(report) file contains the normal results of the analysis with ProB: 

− Values used during initialization of machines; 
− Proof details on each assertion checked; 
− Result of the analysis (true, false, timeout...). 
 

Each err (error) file contains the abnormal results of the analysis: 

− Variables/Constants with incorrect type; 
− Variables/Constants with multiple values, redefinition of value or missing value; 
− Error during execution of ProB (missing file...). 
 

When all report and error files have been generated, an html synthesis report is issued. This report 
gives the result (number of false/true assertions, timeout, unknown results...) for each 
sector/segment. For each B component, a hyperlink to the detailed results, error and report files 
give access to the results of the component (in order to know which assertion is false, for 
instance). 

3.3.2. Deployment & Current Use of ProB at Siemens 
Per agreement with our clients, we still need to use Atelier B in conjunction with ProB. But ProB 
has proven to be more effective and less restrictive than Atelier B for railway data validation. We 
have currently used it on all on-going projects. 

Alger line 1 (ZC): This project has 2 sectors. ProB has been used for the last 3 versions of this 
project railway data. For the last version, the results are as follow:  

Filename (runtime) Predicates TRUE FALSE UNKNOWN TIMEOUT 

pas_as_inv_s01.html 
 1174 1164 10 0 0 
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pas_as_inv_s02.html 1174 1162 12 0 0 

Total  2348 2326 22 0 0 

Each line represents the summary result for one sector. The Predicates column shows the number 
of assertion to be analysed, the TRUE column represents the number of assertions verified by 
ProB (no counter-example found by ProB). The FALSE column represents the number assertions 
failed by ProB (with counterexample). The UNKNOWN column represents the number of 
assertions that ProB does not know how to verify. The TIMEOUT column corresponds to 
assertions that ProB encountered a time out problem during analysis. For each sector, there were 
two assertions un-proved with Atelier B due to their complexity. One of which is shown below. 
This property has rightfully been proven wrong with ProB with the railway data for both sectors. 

ran(inv_quai_variants_nord_troncon >< (((((((((((t_quai_pas <| inv_quai_adh_red_nord_rg_variant_bf_i) |> t_rg_variant_bf) \/ 
((t_quai_pas <| inv_quai_ato_inhibe_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_mto_inhibe_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_atp_inhibe_nord_rg_variant_bf_i) |> 
t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_arret_tete_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_arret_centre_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_arret_queue_nord_rg_variant_bf_i) 
|> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_tete_ape_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_centre_ape_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_queue_ape_nord_rg_variant_bf_i) |> 
t_rg_variant_bf))) /\ ran(inv_quai_variants_sud_troncon >< (((((((((((t_quai_pas <| inv_quai_adh_red_sud_rg_variant_bf_i) |> 
t_rg_variant_bf) \/ ((t_quai_pas <| inv_quai_ato_inhibe_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_mto_inhibe_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_atp_inhibe_sud_rg_variant_bf_i) |> 
t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_arret_tete_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_arret_centre_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_arret_queue_sud_rg_variant_bf_i) |> 
t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_tete_ape_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| 
inv_quai_centre_ape_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <| inv_quai_queue_ape_sud_rg_variant_bf_i) |> 
t_rg_variant_bf))) = {}  

Sao Paulo line 4 (ZC): This project has three sectors. ProB has been used for the last 6 versions 
of this project railway data. For the last version, the results are as follow:  

Filename (runtime) Predicates TRUE FALSE UNKNOW
N TIMEOUT 

pas_as_inv_s036.html 1465 1459 6 0 0 

pas_as_inv_s037.html 1465 1460 5 0 0 

pas_as_inv_s038.html 1465 1457 8 0 0 

Total 4395 4376 19 0 0 

 

ProB has detected issues with a group of properties which had to be commented in machines used 
with Atelier B because they were crashing the predicates prover. Here an example of one of them:  

!(cv_o,cv_d).(((cv_d : t_cv_pas & cv_o : t_cv_pas) & cv_o : 
inv_lien_cv_cv_orig_i[inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) .. 
inv_chainage_cv_fin(cv_d)]])  

& not(inv_lien_cv_cv_dest_i((t_cv_pas <| inv_lien_cv_cv_orig_i~) |> 
inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) .. 
inv_chainage_cv_fin(cv_d)](cv_o)) = cv_d)  

=> inv_lien_cv_cv_dest_i((t_cv_pas <| inv_lien_cv_cv_orig_i~) |> 
inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) .. 
inv_chainage_cv_fin(cv_d)](cv_o)) : inv_cv_pas_modifiable_i~[{TRUE}])) 
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Thankfully, after analysis, we have concluded that the problem was not critical. Nonetheless, 
without ProB, it would have been a lot harder to find these problems. In this case, the assertion-
proof graphs were useful to understand better where the problems were coming from. 

Paris line 1 (ZC): this project has 6 sectors. ProB has been used for the last 7 versions of this 
project railway data. For the last version, the results are as follow:  

Filename (runtime) Predicates TRUE FALSE UNKNOWN TIMEOUT 

pas_as_inv_s011html 1503 1501 2 0 0 

pas_as_inv_s012.html 1503 1498 5 0 0 

pas_as_inv_s013.html 1503 1496 7 0 0 

pas_as_inv_s014.html 1503 1499 4 0 0 

pas_as_inv_s015.html 1503 1498 5 0 0 

pas_as_inv_s016.html 1503 1498 5 0 0 

Total 9018 8990 27 0 0 

 

Roissy LISA: this project has 3 sectors. ProB has been used for the last 3 versions of this project 
railway data. For the last version, the results are as follow: 

Filename (runtime) Predicates TRUE FALSE UNKNOWN TIMEOUT 

ry_pads_as_lisa_inv_pa31.html 1038 1038 0 0 0 

ry_pads_as_lisa_inv_pa32.html 957 957 0 0 0 

ry_pads_as_lisa_inv_pagat.html 1038 1038 0 0 0 

Total 3033 3033 0 0 0 

 

3.3.3. ProB validation 
The IVP generation tool has been empirically validated. For each project, we have verified that 
all important data were kept in the modified machines and that Atelier B and ProB were still type 
checking them. The ProB launcher and synthesis report generator were also empirically validated. 
Their validity is also base on the ProB validation which was carried out by Dusseldorf Team who 
has realised 

− over 1000 manual entered unit tests at the Prolog level, which check the proper functioning of 
the various core predicates operating on B’s data structures. 
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− Over 500 regression tests which are made up of B models along with saved traces. These tests 
are valuable in ensuring that a bug once fixed remains fixed. They are also very effective at 
uncovering errors in different ProB components (parser, type checker, B interpreter, ProB 
kernel, etc.) which are critical components for the data validation. 

− Self-Model check with Mathematical Laws. The idea is to formulate a wide variety of 
mathematical laws and then use the model checker to ensure that no counter-example to these 
laws can be found. ProB now check itself for over 500 mathematical laws which covers laws 
for Booleans (39 laws), arithmetic laws (40), laws for sets (81), relations (189), functions (73) 
and sequences (61) as well as some specific laws about integer ranges (24) and various basic 
integer sets (7). 

 

The above tests are complemented by a code coverage analysis which shows that all predicates 
and clauses of the ProB kernel are covered by tests. Some clauses cannot be covered because they 
are only reachable through internal errors. 

3.3.4. Conclusions 
Siemens has now a long experience with B development at software level. But the minipilot and 
the pilot development raised new technical issues that were not addressed during the past 
experience: in particular, the modelling of failures is something new, requiring new techniques 
(use of probability linked with the Event-B model). 

The minipilot and the pilot resulted in an industrial process that will be followed in the future 
Event-B developments at Siemens. 

The integration of ProB in the software safety validation process has been clearly a great success. 
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4. The Space Sector 

4.1. Introduction 
In this chapter we provide the final feedback by SSF on the results achieved by DEPLOY in the 
space domain. We briefly overview the course of the work, explain how the results of the 
development have influenced deployment directions and discuss the achievements and the open 
issues.  

The chapter is structured as follows: in the Section 4.1 we discuss the deployment strategy. In 
Sections 4.2-4.4 we give a detailed feedback on the method and tools with which we have 
experimented. Section 4.5 provides a general assessment of FM adaptation in SSF. Section 4.6 
looks into deployment in the space sector. In Section 4.5 we draw the conclusions and outline the 
way forward.  

Deployment strategy 

The greatest challenge in the space projects is to ensure traceability of the requirements and 
validate that requirements have been properly implemented. Software development is also 
significantly influenced by RAMS (Reliability, Availability, Maintainability and Safety) activities 
that often lead to requirements changes. The goal of DEPLOY project was to explore how formal 
modelling and verification can facilitate structuring requirements, deriving robust system 
architecture and increasing degree of development automation. 

Our approach throughout the project was to experiment with the formal modelling of several 
typical space applications to understand how to reap the benefits of rigorous engineering and pave 
the path towards integrating it into the existing development practice. 

Initial pilot 

As a pilot, SSF chose to model a considerable subset of requirements of Bepi Colombo (Europe’s 
first mission to Mercury, see [RD2]) SIXS (Solar Intensity X-ray and Particle Spectrometer) / 
MIXS (Mercury Imaging X-ray Spectrometer) OBSW (On-Board Software), the specification 
and implementation of which is to a large extent under the responsibility of SSF. The pilot 
focused on modelling telecommand processing service and verification of the processing flow.  

Enhanced pilot 

As a pilot SSF has chosen a system with richer set of architectural properties – Attitude and Orbit 
Control System (AOCS). SSF is expected to be involved into several projects concerned with 
AOCS in the future. To set the requirements for the pilot, SSF has summarised its design 
experience gained while developing GOCE (Gravity Field and Steady-State Ocean Circulation 
Explorer, see [RD2]) DFAC (Drag-Free Attitude and Orbit Control) to define generalised 
requirements for AOCS. 

The work on the pilot has ignited research on formal modelling of mode-rich systems and 
creating techniques for systematic specification of mode-logic. A variation of AOCS – a 
distributed AOCS was proposed to experiment with formal verification of dynamic behaviour 
with model checking.  

Currently research on integrating RAMS activities is getting a new spin. In cooperation with 
Aabo, SSF is experimenting with modelling dynamically reconfigurable systems as well as 
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deriving safety cases from formal models. 

Abbreviations 

AOCS Attitude and Orbit Control System 
CTL Computation Tree Logic 
DFAC Drag-Free Attitude and Orbit Control 
DoW Description of Work 
DSAOCSS Distributed System for Attitude and Orbit Control for a Single Spacecraft 
DSL Domain-Specific Language 
ECSS European Cooperation for Space Standardisation 
ESA European Space Agency 
ESTEC European Space Research and Technology Centre 
ETHZ Eidgenössische Technische Hochschule Zürich 
FDIR Failure Detection, Isolation and Recovery 
FM Formal Method(s) 
FMEA Failure Modes and Effects Analysis 
FP Framework Programme 
GM Generic Mode 
GOCE Gravity Field and Steady-State Ocean Circulation Explorer 
ID Identifier 
LNCS Lecture Notes in Computer Science 
LTL Linear Time Temporal Logic 
MIXS Mercury Imaging X-ray Spectrometer 
MM Mode Manager 
Mn nth Month in DEPLOY 
NASA National Aeronautics and Space Administration 
OBSW On-Board Software 
PUS Packet Utilisation Standard 
PV Process View 
QA Quality Assurance 
RAMS Reliability, Availability, Maintainability and Safety 
SIXS Solar Intensity X-ray and Particle Spectrometer 
SRD Software Requirements Document 
SSF Space Systems Finland, Ltd. 
TC Telecommand 
TM Telemetry 
Tx.y yth Task in DEPLOY WPx 
UM Unit Manager 
UML Unified Modelling Language 
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4.2. Modelling Activities in the Development Process 

4.2.1. Modelling of BepiColombo SIXS/MIXS OBSW Requirements 
In the WP3 pilot deployment (see [RD5]), SSF created Event-B models for a considerable subset 
of requirements of the OBSW, with focus on handling of telecommands and on production of 
telemetry packets, i.e., on application of PUS (Packet Utilisation Standard, see [RD1]). While 
modelling in Event-B we had to clarify certain requirements. As a result of spotting certain 
ambiguities the requirements were changed. Though it is hard to assess whether the thorough 
requirements inspection would have had the same impact, we can certainly say that DEPLOY has 
facilitated requirements engineering of the OBSW. 

After the initial modelling several other modelling attempts were undertaken (see [RD6]). At that 
phase, no new requirement was modelled and no feedback to requirement authors got produced. 
Instead, the focus was on trying to construct better models by utilising the modular and 
decompositional extensions (see [RD7]) of the Event-B language. Modelling with the modular 
extension was done by SSF, whereas modelling with the decompositional extension was done by 
Southampton. The work on the modular modelling produced a useful tool feedback that allowed 
the developers to improve the tools as well as analyse different approaches to using 
modularisation in Event-B development.  

Development of OBSW has demonstrated that for some systems modelling of dynamic behaviour 
poses the main challenge. For instance, OBSW does not have complex safety constraints 
represented by the corresponding invariants. This was not surprising for modellers at SSF because 
a typical software requirement expresses what the software should do in a given situation. Events 
alone suffice for modelling such requirements. Invariant-like higher-level requirements may exist 
but may consider equipment in a way that the implications to the software are “shallow” or too 
abstract or beyond the scope of software requirements. Formal modelling of the systems similar 
to OBSW should be more focused on reasoning about liveness-type of properties. For instance, at 
the second phase of the project we have experimented with using UPPAAL tool to analyse 
dynamic behaviour and timing aspects of OBSW. Modelling of Attitude and Orbit Control 
Systems 

For the enhanced deployment phase, SSF has decided to experiment with a system that has a 
richer set of safety properties. The requirements for the case study were written in the Ada 
programming language. In that way, a pre-tested specification with a precise semantics got 
produced from scratch in less than one month. SSF’s Event-B activities (see [RD5]) on this 
AOCS were carried out within a couple of months and got completed in January 2010. SSF’s 
Event-B models considered in [RD5] are statement-by-statement models of the Ada presentation. 
Many people in the Event-B community seem to be categorically against such a way of 
modelling, but many of the used arguments are unconvincing in the sense that source code 
modelling has for many years been a main-stream approach in computer-aided verification. In 
January 2010, SSF decided not to continue statement-by-statement modelling, but only after the 
whole Ada presentation had already been modelled and primarily just because too much work 
was needed for proving the invariants of interest. Also note that some of those invariants were 
proven indeed, and for each remaining invariant it seemed possible to construct a proof. 

As with BepiColombo, formal modelling has resulted in several changes of the Ada 
representation of the requirements. Aabo and Newcastle have created several Event-B models 
“inspired by AOCS”. Some of these models are considered in the papers [RD12], [RD13] and 
[RD15]. The goal of this work was to propose a generic method for modelling mode-rich systems 
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in Event-B. In particular, the system specification was structured according to architectural layers 
and consistency conditions between mode logic at different layers were defined. Originally, 
AOCS is a centralised control system. A dedicated component – manager of the global mode 
logic is responsible for system mode transitions. A natural extension of the work on modelling 
mode-rich systems is to experiment with verification of mode-logic of distributed systems. In 
December 2010, Aabo and Newcastle suggested that SSF would specify and model a distributed 
AOCS. A corresponding specification is now available as [RD23]. A mode synchronisation 
protocol designed from scratch is in a sense the “core” of the specification. SSF’s formal method 
activities on the distributed AOCS have so far solely concentrated on the problem of whether the 
protocol is correct for its purpose. Various trial-and-error attempts to prove certain associated 
invariants have unsuccessfully been made using Rodin platform. Some evidence for correctness 
in cases where the number of modes is 3 and the number of protocol partners is 2 has been 
obtained (see [RD24]) using ProB [RD18]. The case of 3 modes and 3 partners somehow seems 
to be beyond the capabilities of explicit-state model checkers such as ProB, so a few weeks have 
been spent in trying to find counterexamples in that case by means of bounded model checking, 
using the symbolic model checker NuSMV [RD17]. 

 

4.3. Assessment of Event-B and Rodin platform 
Event-B is essentially a guarded command style language where events and guards can be 
specified using a simply typed first-order logic. Since the language is Event-Based, it is eminently 
suited for modelling behaviour that can be captured well with state machines. Capturing 
algorithmic computation requires more effort. 

An Event-B model has two parts: the context and the machine. Roughly speaking the context 
captures static definitions such as types while the machine models the behaviour. Refinement can 
be used to split the modelling into several successive steps where each model provably is a 
behavioural refinement of the more abstract machines. This allows for some limited management 
of model complexity, but experience has shown that it mostly functions as an aid to manage proof 
complexity. 

The Rodin platform is the main tool used for Event-B modelling and proof activities in DEPLOY. 
Though Event-B in principle is independent of tools, the implementation in Rodin platform is 
dominating in the sense that there is no competing Event-B tool. 

Serious lack of scalability discourages industrial use of Rodin platform, no matter how much 
effort is put on improving the competence of users. Very high consumption of memory without 
any really good reason is perhaps the worst concrete form of this lack of scalability and has side 
effects such as non-response (e.g. due to thrashing in use of virtual memory) and "disappearing 
auto-provability" (i.e. failure in automated discharging of a proof obligation that under earlier 
circumstances has got automatically discharged). Such consumption occurs in quite "medium 
size" models and typically does not seem to be due to "inherent complexity". 

A lot of time in interactive proving tends to get spent in selecting of needed hypotheses and in 
deselecting of unneeded hypotheses. Rodin platform tends to be unable to draw any obvious 
conclusion when there are many selected hypotheses. 

The Event-B proof methodology in Rodin platform questionably ignores the problem of 
inconsistent combinations of axioms and/or guards. In cases of inconsistency, even a very careful 
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user may produce arbitrarily many proofs without noticing the inconsistency, as it is not 
necessarily likely for an inconsistent combination of axioms and/or guards to get used in a single 
proof. Rodin platform should definitely have a proper interface for proving consistency among 
axioms and guards. 

Despite certain improvements during DEPLOY, the type system in Event-B is uncomfortable if 
not inadequate. For example, there is no proper support to abstract data types, i.e. types defined 
by means of inductive axioms, as it is strikingly difficult to produce any inductive proof in Rodin 
platform. (We would like to note here that we did not evaluate the theory plugin recently 
developed in the project.) 

In plain Event-B, lack of modularity is not only a readability problem but also a source of 
arbitrarily much work that could be avoided with proper utilization of modularity. Due to work 
done by Newcastle and Aabo in WP3, a modular extension of Event-B and an associated plug-in 
of Rodin platform now exist and are considered in detail in Section 4.4. 

A trained person can construct a medium complexity Event-B model in a few weeks. However, 
spending a few weeks on writing an Event-B model tends to be more frustrating than spending 
the same amount of time on writing a program in high-level programming language. One 
explanation is that any high-level programming language inherently provides more "interesting 
variation" than Event-B. 

Let us end the assessment with some positive observations: 

• A proof on paper can often be mechanized using Event-B and the Rodin platform. 

• Many things can be expressed in Event-B much more compactly than in many other formal 
languages. 

• Ensuring correctness of proofs and increasing the degree of automation in proofs have had a 
high priority in the development of the Rodin platform. 

• Many useful plug-ins of the Rodin platform have been created in DEPLOY. 

• The latest version of the Rodin platform is definitely much more convenient to use than the 
version that was available in the beginning of DEPLOY. 

 

4.4. On the Use of Methods and Tools 
Here we consider methods and tools “beyond what is default in Rodin platform”. 

4.4.1. Model Checking 
It is often the case that a property of interest is expressible as a temporal logic formula but not as 
an invariant. Such properties are beyond the scope of proper Event-B proof methodology but not 
necessarily beyond the scope of Event-B. ProB [RD18] and the ProB plug-in [RD7] provide 
model checking of LTL and CTL formulas such that the syntax of atomic formulas is the same or 
almost the same as the syntax of predicate expressions in Event-B.  

In preliminary work for pilot deployment in 2008, SSF used ProB in search for deadlocks in a 
“root machine” of an Event-B model of BepiColombo SIXS/MIXS OBSW requirements. A 
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deadlock was found indeed, and the machine was revised accordingly. While using ProB for more 
detailed machines we have found it difficult to compute consistent instances of the used Event-B 
contexts. 

In Autumn 2011, SSF used ProB in checking of LTL formulas that concern the “3 modes and 2 
partners” case of the mode synchronisation protocol designed for a distributed AOCS. Except for 
the formulas, the protocol descriptions were written in Event-B using Rodin platform. The ProB 
plug-in was used for producing machines for the stand-alone ProB that was used for the actual 
model checking. Though the plug-in itself has model checking facilities, SSF preferred to use the 
stand-alone tool in order to avoid unnecessary feature interaction and in order to utilise late 
improvements that were available for the stand-alone tool but not for the plug-in. 

The Event-B description of the mode synchronisation protocol got revised several times as ProB 
reported counterexamples to expected properties. The found errors were modelling errors, i.e. 
mismatches between the verbal specification and the Event-B description. (The verbal 
specification itself was later revised due to an error that was found in inspection without any 
tool.) 

Some attempts were made in order to use ProB in the “3 modes and 3 partners” case. However, 
ProB tended to run out of memory almost regardless of the intended model checking activity. A 
support to memory efficient state space generation actually got implemented in ProB soon after 
the developers had been informed about the problem. 

In model checking, it is often wise to consider several formalisms and tools. For the period 
December 2011 – January 2012, SSF has used model checking outside Event-B, still working on 
conjectured invariants that had originally been written to be proven in Rodin platform. Most of 
these experiments have been done using bounded model checking in the symbolic model checker 
NuSMV [RD17]. Several model checking processes have been run in several processors for 
several weeks. So far all results confirm that a desired property holds in all states that are 
reachable from the initial state within an expressed number of steps. Though NuSMV has options 
for concluding whether a check is complete w.r.t. the state space, it may be impossible to reach 
such a conclusion. In some processors, some checks have already got stopped due to running out 
of memory. The archive [RD25] contains one of the used protocol descriptions in NuSMV 
modelling language, some formulas that have been considered and some associated script and log 
files on NuSMV experiments. 

The model checking plug-ins for the Rodin platform provide a useful way of debugging models, 
and in some cases even proving model properties. Although problems have been encountered, the 
model checking plug-in have developed and matured at a rapid pace.  

4.4.2. Real-Time 
Design of space software is often dominated by real-time requirements. The idea to reuse Event-
B models to verify real-time requirements is explored in the report [RD10] that also contains a 
small case study for demonstrating the approach. This research is also described in Section 4.2 in 
the deliverable [RD6]. Process View (PV) modelling with explicit notions of processes and their 
synchronisation was suggested as the modelling approach, and verification of properties not 
expressible as invariants was suggested to be handled by model checking, via a translation to the 
model checking tool UPPAAL [RD22] that is dedicated to real-time aspects. 
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4.4.3. FMEA in the Development of Layered Mode-Rich Control Systems 
In our work on ensuring mode consistency of AOCS we have relied on the mode logic that has 
been defined a priori. However, often mode logic has to be defined by the system developers. To 
facilitate this process we proposed a structured approach to defining fault tolerance part of mode 
logic, e.g. backward mode transitions. 

Embedded control systems typical for space sector are often developed in a layered fashion, 
which provides the designers with a convenient mechanism for structuring the system behaviour 
according to the identified architectural layers. Each software component in layered mode-rich 
systems can be viewed as a mode manager. Let us assume that the scenario defines how to bring a 
system from the non-operational mode to the most advanced mode. Such a forward mode 
transition scenario is usually given in the system requirements document. 

The implementation of the mode transition scenario can be interrupted either by transitional 
errors (i.e., errors that appear during a mode transition step) or unit usability errors (i.e., errors 
that occur when a unit performs below its required level). When the mode manager (MM) 
chooses a new target mode, it initiates the corresponding mode transitions in the lower layer unit 
managers (UMs). If an error is detected, the corresponding unit manager assesses the error and 
either initiates error recovery by itself or propagates the error to MM. MM, in its turn, makes a 
decision how to handle such an error. This decision usually involves rolling back to some less 
advanced (i.e., degraded) mode. 

To systematically define the rollback procedures for each mode, we proposed to conduct Failure 
Modes and Effects Analysis (FMEA). FMEA is a well-known inductive safety analysis 
technique. For each system function or component, it defines possible failure modes, local and 
system effects, as well as detection and recovery procedures. The information is collected in a 
table form. The traditional FMEA allows us to discover and structure failure modes of 
components. We propose to conduct FMEA of each operational mode. Therefore, we tailor 
FMEA to fit our purposes. In our work [RD20] (see also [RD16] and [RD19]) we have proposed 
a systematic approach to deriving the fault tolerance part of a mode logic using FMEA. Also, we 
have formalised the required conditions of mode consistency and demonstrated how to ensure 
them while developing a system by refinement in Event-B. Verification by theorem proving and 
stepwise refinement have allowed us to undertake a formal development of a complex control 
system — Attitude and Orbit Control System (AOCS). Hence our approach shows a good 
scalability. 

4.4.4. Modularisation 
Rodin platform's modularisation plug-in [RD7] (see also [RD11]), designed by Newcastle and 
Aabo as a part of WP3, provides facilities for structuring Event-B developments into logical units 
of modelling, called modules. The module concept is very close to the notion of classical B 
imports. However, unlike a conventional development, a module comes with an interface. An 
interface defines the conditions on how a module may be incorporated into another development 
(that is, another module). The plug-in follows an approach where an interface is characterised by 
a list of operations specifying the services provided by the module. An integration of a module 
into a main development is accomplished by referring operations from Event-B machine actions 
using an intuitive procedure call notation. 

There are at least the following reasons to split a development into modules. 

• Structuring large specifications: it is difficult to read and edit a large model; there is also a 
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limit to the size of model that the Rodin platform may handle comfortably and thus 
decomposition is an absolute necessity for large scale developments. 

• Decomposing proof effort: splitting helps to split verification effort. It also helps to reuse 
proofs: it is not unusual to return back in refinement chain and partially redo abstract models. 
Normally, this would invalidate most proofs in the dependent components. Model structuring 
helps to localise the effect of such changes. 

• Team development: large models may only be developed by a (often distributed) developer 
team. 

• Model reuse: modules may be exchanged and reused in different projects. The notion of 
interface makes it easier to integrate a module in a new context. 

A modularisation plug-in experiment on BepiColombo SIXS/MIXS OBSW requirements was 
carried out at SSF in August – September 2010 and was focused on a few of the requirements that 
had been considered in earlier non-modular experiments. 

The original goals of the experiment were as follows: 

• Systematic isolation of activity details and related conditions to modules in such a way that 
the machines using the modules do not replicate much of what is expressed inside the 
modules. 

• Precision of descriptions of the considered behaviour about as accurate as in the most detailed 
available non-modular Event-B model. 

• Avoidance of massive atomic activities. Long chains of atomic activities do not realistically 
model concurrency. 

• To deal with "module integration invariants". Such an invariant refers to variables of more 
than one module. 

• Reasonable total proof effort (including time spent in "iterative optimisation") without 
compromising the above goals. 

The final Event-B project of the experiment can be understood to sufficiently meet all the above-
mentioned goals, except possibly the proof effort reasonability goal. However, the proof effort 
was to a certain extent more reasonable than in some earlier Rodin platform experiments. 

The problems encountered in the tools during the experiment have been solved in later releases of 
the plug-in. Since October 2010, the plug-in has been in a good shape with respect to the features 
used in the experiment. 

By following certain modelling conventions it is possible to significantly improve the usability of 
modularisation plug-in. Designers of the plug-in recommend the following conventions. 

• Avoiding very large and complicated operation post conditions, especially involving 
existential quantifiers to simplify proofs. In general, complex post-conditions can be 
simplified by introducing additional module variables and invariant properties on these 
variables. 
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• Refraining from using operation calls to model returned exceptions. To achieve the same 
effect one might strengthen preconditions of calling events by checking external module 
variables. Rather than using returned composite values, which can include the status 
indicating success or a particular occurred exception, additional external module variables 
storing such a status of the latest call can be introduced. 

• Avoid generating new values supplied by the environment inside of operation post 
conditions. The problem can be circumvented by introducing additional local variables in a 
calling event and then forwarding the value of these local variables as extra parameters of an 
operation call. Alternatively, module processes can be used for modelling such input from the 
environment. 

Even when these guidelines are followed, usability of the plug-in suffers from a ``macro-style'' 
approach in the sense that in interactive proving, the user deals with the output of a translator and 
is assumed to understand that output as if it were the original form. However, solving this 
problem would likely involve a lot of work, whereas e.g. the record type plug-in [RD7] of Rodin 
platform has essentially the same problem. 

4.4.5. Decompositional Approaches 
Atomicity Decomposition 

In atomicity decomposition [RD8], coarse-grained atomicity is refined to more fine-grained 
atomicity. New events introduced in a refinement step are viewed as hidden events not visible to 
the environment of a system and are thus outside the control of the environment. Any number of 
executions of an internal action may occur in between each execution of a visible action. 

Model Decomposition 

The notion of model decomposition [RD8] covers machine and context decomposition. The entry 
point for the decomposition of a model is a machine and its whole hierarchy of seen contexts. The 
resulting sub-models are independent of each other, and the partition of the models includes the 
allocation of variables, invariants, events and even context elements like sets, constants and 
axioms to subparts. 

Model decomposition has two main styles. In shared variable style, events are partitioned into 
sub-components in different machines, variables associated with the original events get shared by 
the machines, and the sub-components can be refined independently but only in such a way that 
shared variables are present and not data-refined. In shared event style, variables are partitioned 
into sub-components in different machines, events associated with the variables get split 
accordingly, and the sub-components can be refined independently without constraints. 

Experience at University of Southampton 

University of Southampton maintains a decomposition plug-in [RD7] and, as documented in 
[RD8], has used the plug-in for applying the above-described decompositional approaches to 
BepiColombo SIXS/MIXS OBSW. SSF’s non-decompositional Event-B projects have been used 
as de facto primary specifications in this experiment that has turned out useful in development of 
decompositional practices. 

SSF has no relevant experience about the decomposition plug-in but sees the above-described 
approaches being motivated by a several decades long history of process-algebraic approaches. 
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4.4.6. Code Generation 
Several code generation plug-ins [RD7] for Rodin platform are being developed. SSF is mostly 
interested in C code generation and has a few times informed the plug-in developers about 
aspects that are important from SSF’s point of view. SSF has so far not performed extensive 
evaluation of the plug-ins. 

 

4.5. Overall Assessment of Internal FM Adoption 
This section is scoped to SSF. Dubravka Ilić, Timo Latvala and Kimmo Varpaaniemi have had 
the role of formal method experts. Thomas Långbacka specified the system considered in the 
WP3 minipilot. Pauli Väisänen did most of the AOCS specification work for the pilot. All these 
people have a research background on formal methods, though only one has pre-DEPLOY 
experience on Event-B. Kimmo Varpaaniemi is the main author of almost every Event-B project 
released by SSF. Matti Anttila, Timo Latvala, Thomas Långbacka and Tero Vihavainen attended 
the Event-B training in Zürich in April 2008. Laura Nummila and Tuomas Räsänen spent several 
months inside SSF in 2010 on getting familiar with Event-B and Rodin platform. This internal 
training is documented in the report [RD21] and in the deliverable [RD6] Section 4.6.  

DEPLOY is so far the only project at SSF where Event-B has been used, even though SSF has 
had prior to DEPLOY other similar also academic projects. Consequently, the tradition of using 
formal methods exists to some extent, but it is not utilised in any commercial way. DEPLOY 
showed us approximate costs and risks involved in training personnel without any prior 
experience in formal methods, but also revealed the most common limitations to wide adoption of 
FMs. The most arguable of these is the justification of the effort of using FMs (adoption, learning 
curve, application) vs. benefits in the real commercial project. Even if some potential exists as 
Rodin tools (platform + numerous useful plug-ins) showed, more easy-to-use, comprehensive and 
automated tools are needed, as recognized by most of the SSF staff who participated in the 
trainings. We can freely say that almost one third of the company had some hands-on the tools 
and methodology resulted within DEPLOY but as outlined above, currently there is not one 
commercial project where this experience would be directly applied. This does not mean, 
however, that DEPLOY achievements are diminished — on the contrary — we believe that the 
experience gained in this project showed us greater perspective for improving some other 
development practices we already have. 

 

4.6. Strategies on Space Deployment of Formal Methods 
Even though space domain specific applications were of the most interest in the project and our 
initial key requirements for using FMs were drawn to satisfy these initial needs, practice and 
experience gained during the project lifetime showed that the domain specific requirements could 
be generalized and are as valid and applicable as those in other fields. As our experience of FMs 
grew larger, unforeseen needs started driving our further project engagement. For instance, SSF 
would benefit from code generation, even though this was not of big interest during the project 
lifetime. With now more mature experience on methods and tools usage, we can look forward to 
new improvements like incorporation of FMEA results etc. Modularization plug-in as well seems 
to bring a substantial potential when it comes to developing mode-oriented systems, quite typical 
not only in the space domain but other domains within SSF’s line of business as well. 
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In general, the experience gained in the project creates a great base for further following up the 
tools and methods improvement especially those that are of greater need for SSF and which were 
not covered by this project alone. As we currently see it, FMs have significant potential to be 
used in the space domain but require much stronger verification power and higher automation 
level. Expressivity and ergonomy are important but not necessarily dominating factors. (For 
example, a useful model checker with an uncomfortable language is better than a less useful 
model checker with a comfortable language.) 

 

4.7. Conclusions 
Originally starting involvement in DEPLOY project with only very few people familiar with 
formal methods, evolved into having a community with improved competence on formal methods 
capable of applying their experience in a specific space domain and wider. The interest was 
mutual. Feedback from SSF has had a certain impact on development of methods and tools in 
DEPLOY. Specific project needs originated from SSF’s line of work droved development of 
additional plug-ins and made somewhat significant improvement of the platform as well through 
feedback on various case studies.  

Even though SSF’s focus has slightly changed throughout the project, the main achievements do 
fulfil initial expectations and form a solid base for possibly further application and exercise of 
DEPLOY results within company’s other businesses as well.  
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5. The Business Information Sector 
In this chapter we provide the final feedback by SAP on the DEPLOY work for the business 
information sector. This is largely based on the experience from the second part of the project, 
such that the latest developments and improvements of the platform are taken into account. The 
necessary concepts and tooling we created in this second part of the project have been described 
in Deliverable D4.2 [D42]. Similar to Deliverable D29 [D29] which reports on the assessment of 
the initial pilot deployment (for the first half of the project), in this document we will provide the 
final assessment focussing on the enhanced pilot deployment.  

The chapter is structured as follows. The question What are the strategies on deployment in the 
Business Sector? is discussed in Section 5.1 Section 5.2 continues by describing the concrete 
tooling we created during the enhanced deployment in order to answer the question Which 
artefacts have you developed?. Section 5.3 describes our effort in evaluating the enhanced 
deployment in an industrial setting and answers the question What deployment have you 
achieved? The following Section 5.4 discusses How well is the enhanced pilot adopted?. In 
Section 5.5 we describe What is the assessment of the Event-B method? and Which advances of 
the methods have been useful and in which way? Finally, in Section 5.6 we explain our view on 
the tool platform. A discussion regarding the role of training material and its quality is left out, 
since the deployment strategy we followed (hiding the formalism from users) did not rely on 
training material of the DEPLOY project. 

5.1. Introduction 
Business software consists of any software which helps companies improve their business. In 
contrast to typical areas of application of Formal Methods, this area has some, e.g. safety critical, 
aspects which have been significant incentives to make the use of Formal Methods attractive, as 
e.g. in the transportation industry. On the other hand business software is often highly mission 
critical. As a result, customers expect high qualitative software which is efficiently developed — 
goals, which Formal Methods could be helpful to achieve. Nevertheless Formal Methods are (to 
our knowledge) not used routinely in the development of business software. 

In this deliverable we are reporting on the evaluation of our activities towards a successful 
deployment of Formal Methods developed in the EU-FP7 project DEPLOY in the business 
sector. As there are specialised established domain-specific languages for the development of this 
software in place, switching to non-domain-specific languages and working with mathematical 
syntax is typically considered not to be feasible. 

Our approach throughout the project therefore was to make business application developers 
benefit from formal verification techniques by hiding the mathematical formalisms, such as 
Event-B, behind the languages normally used in business software development and to rely on the 
high automation of today's verification tools, so that developers do not have to directly interact 
with the formalism. 

Initial Pilot 

For the initial pilot deployment, reported in deliverable D4.1 [D29] we focussed on service 
choreography modelling and integration testing. By providing a domain-specific modelling 
approach (MCM), including automatic transformation to Event-B and automatic verification and 
test generation utilizing the Rodin platform, we were able to demonstrate the feasibility of hiding 
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advanced formal verification techniques from software developers.  

In order to demonstrate how to apply these techniques on the implementation level as well, we 
decided to enhance the described solution with the capability to check consistency between our 
domain-specific language (DSL) and the already integrated architectural artefacts, thus guiding, 
and driving the implementation process of business software. 

Enhanced Pilot 

After concluding the work on the pilot for service choreography, we went into an internal 
evaluation. The aim was to identify the options for an enhanced deployment [D29]. After being 
able to convince our stakeholders about the general applicability of utilizing Formal Methods in 
the business software development process, the focus was on identifying the area with the highest 
potential for a broad productive use. 

During the discussions it became very clear that formal techniques should be based on already 
adopted modelling languages to increase acceptance and lower the need for learning. 
Furthermore, the automatic test generation based on design artefacts turned out to be the key 
factor for creating interest in adopting our concepts in the development organization.  

As process modelling is by far the most common and mature way of describing the overall scope 
of business software, we decided to concentrate on the system level for the enhanced pilot 
deployment instead of extending the previous work on the comparatively lower abstract service 
layer. This choice was further encouraged by the fact that system-level testing activities are in 
fact most decisive for business software. This is due to the fact that companies are usually able to 
correct inconsistent data due to faulty software, but are highly dependent on being capable to 
execute their standard processes. 

Our aim was further to leverage not only our experience from the first piloting phase, but also 
concrete concepts and implementations where applicable. For the modelling of business processes 
we again targeted an automated model transformation and verification approach in order to hide 
complexity from the user, which allowed us to reuse our previous work on formal property 
checking (e.g. deadlock freedom), and further enhance the approach (e.g. by data consistency). 

Also, on the testing side we were able to incorporate much of the previous work by continuing to 
utilise the Event-B transformation for creating test cases with ProB. This gave us more freedom 
to work on the maturity of the general testing framework and to punctually improve its building 
blocks. As the dependence on a specific tool provider was perceived as a major obstacle for 
adopting the solutions of the first piloting phase, we put our major effort into the generalization of 
the concepts. As reported in Deliverable D4.2 [D42] we designed a phased model transformation 
approach that allowed us to choose between different test generators in a unified way. 
Furthermore, we enhanced the existing test optimization and integrated our solution into the 
testing framework at SAP. 

 

5.2. Conducted Work 
In order to realize the envisioned deployment, we integrated various components into a 
productively used testing framework at SAP. In Figure 5.1 the main blocks of this framework 
including our components are presented. The Test Environment offers UI-based keyword-driven 
testing capabilities through a Scenario Editor, which allows to assemble captured test scripts and 
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to visualize the generated executable scenarios (obtained from test cases). The scripts can be 
recorded through the Script Recorder component, which is connected to the System under Test 
(SUT) for this purpose. Besides the capturing of user interactions on the SUT, the Script 
Recorder offers replay functionality, which is also utilised for the stepwise execution of 
scenarios. Together with the SUT and the Backend Repository it assembles the original setup. 

 

 

Figure 5.1. Architecture of the MBT environment 

 

We extended the test environment by creating and integrating the Test Model Editor, which 
allows the creation and editing of process-based test models. It further enables the triggering of 
the test generation and visualization of the resulting test suite.  

In order to mitigate the risk of dependency from one single test generation technology, our goal 
was to integrate multiple tools and vendors, which we achieved by providing transformations 
from process-based test models (TM) to abstract state transition machines (STM), which can be 
transformed further into vendor-specific input formats in a straight forward manner. Due to the 
lack of an existing intermediate format, we created a proprietary STM. However we published its 
concepts and are active in contributing its concepts to the various emerging standardization 
initiatives. A proxy is set up for routing the test generation requests in order to obtain a single 
communication partner, which allows to add and update generator components without additional 
configuration of the test environment. 

General-purpose MBT tools rely on varying strategies to reduce the large initial test suites they 
produce during test generation. Therefore we decided to offer unified test suite optimization 
independent of the chosen test generator. This further allows us to consider custom requirements 
for the enterprise software domain. The different optimization procedures are wrapped in another 
set of web-services and can be used in the following way. After the test generation succeeded, the 
resulting traces are transformed into an intermediate test suite format and sent to the proxy 
component, which forwards it to an appropriate Suite Optimizer.  
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The test reduction is implemented on the intermediate format for test suites. Therefore a further 
transformation of the results in the Suite Optimizer is not necessary. The proxy takes the reduced 
test suite and routes it back to the Test Model Editor where it will be used to create the concrete 
test suite, containing executable scenarios. 

Besides being able to seamlessly integrating the Test Model Editor, detaching the test 
environment from the test generation services brings the following advantages: 

• Re-Use: Utilizing a generic input and output format, we are able to hide the complexity 
of the specific model transformations into the input format of concrete test generators, 
thus making MBT accessible as a service to other potential test environments. 

• Performance: Decoupling computational expensive functionality like test generation and 
test suite reduction promises better system performance and does not block front-end 
users. Replication of the web-services and the introduction of load balancing to the proxy 
further increases scalability.  

• Maintenance: The service-based decoupling in combination with a proxy further allows 
to maintain and upgrade test generation components in a non-persuasive way. 

 

5.3. Deployment Evaluation 
After prototyping, creation and integration of the components described in the previous section, 
we consulted one of SAP's major product areas in order to negotiate an evaluation strategy. It was 
agreed to set up a case study with 7 development teams, which were asked to apply model-based 
testing (MBT) in their scenario testing activities for a specific internal release. During their 
activities, the team members where asked to collect requirements and report bugs they 
encountered. After concluding the case study further interview session were carried out with the 
participants, in order to get their overall assessment of the tool as well as information about their 
productivity and the experienced learning effort. As information about product and development 
activities have to be handled with great discretion (especially in the case of quality-related 
information), we will report in a more general way about the findings of the case study. However, 
we feel that this is also in the interest of the reader as it abstracts from the product and company 
specific context. 

Case Study Participants 

The participants did not have a background in Formal Methods but knew the basic concepts of 
business process modelling and were familiar with the concrete business process they wanted to 
cover with different scenario tests. They were further trained and experienced to use the 
proprietary testing environment, but did not have any knowledge about MBT. In the beginning of 
the case study, they received a 2 hour workshop on the additional modelling and testing concepts, 
necessary to understand and operate our tool-extension as well as additional documentation and 
guiding samples. Further all participants could rely on remote expert support for any tooling, 
technology or process related question. On average these support activities aggregated to about 
one additional hour per participant.  

Requirements Analysis 

Over the course of the case study, the participants collected 47 different requirements and 
prioritized them regarding their importance from 1 (absolute showstopper) to 5 (nice to have). In 
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the 2 months period of evaluation we were able to incorporate all requirements of priority 1 and 2 
and most of priority 3. The remaining requirements mainly concerned the automation of addition 
steps in the test generation process, which do not directly relate to the test generation and had 
been manual steps in the original process as well (e.g. the linking of created test cases with test 
plans) or even addressed issues in the original test environment. Overall, only one requirement 
concerned the enhancement of the test generation functionality, while the remaining mainly dealt 
with usability issues. 

Interview Sessions 

Each participant was interviewed after the case study. All stated that the maturity of the tool 
improved dramatically during the evaluation phase and agreed on the verdict that both tool and 
testing process is mature enough for a broad use inside the organization. Further it was confirmed 
that the learning effort was very limited and the approach quite intuitive. As expected, the 
usability of the test model editor still left room for improvement, but was comparable to other 
internally used tools. It was a common observation that the MBT approach demanded greater care 
in the script recording and test data definition activities. However this was generally perceived as 
a positive side-effect. 

Conclusion 

Based on the requirements analysis and interview sessions, sufficient confidence has been gained 
to go for a phased roll-out of model-based scenario testing to the whole product area. This roll-
out will be accompanied by the hand-over of responsibility for the maintenance and further 
improvement of the tooling that was created in the context of DEPLOY from our research unit to 
an operations team. 

 

5.4. Level of Adaptation 
As described in the previous section, the results of DEPLOY are going to be used productively in 
the future. Since we based all modelling on existing domain-specific model types and translations 
to Event-B, developers are able to create and maintain modelling content without a deep 
understanding of Formal Methods. The Event-B language as well as the utilised concepts and 
tools embedded in Rodin are completely hidden from the users.  

In this way we hope that a large group of developers will be able to make use of Formal Methods 
in the future. On the other hand the chosen deployment approach demands highly skilled 
maintenance workers which are not only deeply familiar with the Formal Methods used but also 
with the technical framework hiding it. At the moment this special maintenance is still taken by 
researchers and it remains unclear whether it will be possible to hand it over to development in 
the future as well.  

Nevertheless we achieved to build up confidence in the development community that Formal 
Methods can be used routinely and beneficially in the development process. Thus, we feel that 
model-based testing could be a kind of a eye-opener as it showcases some of the many 
advantages of using Formal Methods. Further, we are currently in promising negotiations with 
sales representatives and consultants in order to make our tools available as product offerings to 
SAP partners and customers.  
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5.5. Assessment of Event-B Method 
The Event-B language can be used comfortably to describe event-triggered concurrent models 
(such as message choreography models) and state machine based models (such as implementation 
models for business objects). This is because each activity, as represented as an Event-B event, is 
independent of other activities, and only controlled by environmental stimuli (like messages) or 
control states, which can be effortlessly modelled in event guards. On the contrary, when it comes 
to sequential models like business processes, extra care has to be taken for a token-based 
mechanism to express sequentiality, especially when multiple instances of a same activity can 
exist and run in parallel. This does not only increase modelling complexity, but also put 
additional burdens on model verification. With the Flow plug-in, sequential properties (not 
models) can be intuitively expressed in graphic terms. However, it is yet to be evaluated whether 
the plug-in can reduce the difficulty of verification. 

An advantage of Event-B is its refinement paradigm, which provides a reasonably easy way to 
formally capture relationships of models at different abstract levels. This is important because, 
using refinement, we are able to prove that models are consistent with each other throughout the 
whole development cycle. However, from our practical experiences, while it is relatively easy to 
transform model consistencies even automatically into formal refinement specifications, it is 
usually very difficult to validate such refinements using either theorem proving or model 
checking techniques. Without exceptions, a large amount of manual efforts is indispensable to 
figure out additional and often hidden relationships between models in order to increase 
provability. Although we see potential solutions to automatically discover such auxiliary 
relations, there is still a huge gap between what we can model using Event-B, and what we can 
prove using the Formal Methods that support Event-B. 

Event-B comes with powerful automated theorem provers that can handle integers quite easily. 
Various auto-/post-tactics can be selected and combined to automatically discharge a large 
number of proof obligations. A recent introduction of the Relevance Filter plug-in uses heuristics 
to select relevant hypotheses in each proving step. Using this plug-in, we witnessed a high 
increase in the number of automatic PO discharges for some of the models that we experimented 
with. While all of these are quite promising, we are still in great expectation for more powerful 
automated provers and for better user supports in manual proofs. The integration of the Isabelle 
prover is deemed an important step towards this goal. 

Different decompositions are available to reduce the complexity of modelling large software 
models that can be naturally divided into separate sub-components. These decomposition 
techniques are supported by plug-ins, which allow the enforcement of certain relations before and 
after decompositions. However, all decomposition techniques have their limits and are suitable 
only for certain scenarios. For instance, shared-event and shared-variable decompositions support 
only top-down development. For a service-oriented world where service compositions and 
orchestrations make up a large portion of software development, bottom-up design is very 
common but only supported by modularisation. In fact, any sophisticated software development 
involves both top-down and bottom-up designs, and using one and only decomposition technique 
is unlikely to suffice. Combining all decomposition techniques in one model development will be 
an interesting topic to explore. 

Business software models use strings and structured data types very commonly, which can be 
better supported now using the Theory plug-in. Collaborative modelling started to get attention, 
and the Teamwork plug-in is a welcomed first step. However, our evaluation shows that it is not 
mature enough to be applied in real life model development. We would especially like to see 
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support for collaborative proving. 

 

5.6. Assessment of Rodin 
Rodin is a well developed software environment having different plug-ins (ProB, AtelierB-
Provers, Anim-B, UML-B, etc.). It provides a good support for Event-B language. The tool is 
sufficiently well documented and has an intuitive and user-friendly interface. 

Even though Rodin is a well-developed, stable and simple-to-use application, the large footprint 
of the Eclipse framework hinders its deployment inside of a web-service. Fortunately the ProB 
plug-in was also made available as a standalone tool, so that we could realize our envisioned 
client-server architecture for a seamless integration into the currently used test framework, as 
described in the previous sections. 

Another problem is due to the incompatibilities among plug-ins. For a realistic development, it is 
necessary to take advantage of the power of several plug-ins. This is however not supported by 
Rodin and its plug-ins. There is also no framework or methodology to ensure plug-in 
compatibilities. For instance, we need modularisation to decompose a software model into several 
sub-component, each having its public interface and private interface hidden from other 
components. Then, when we use ProB to check the model, ProB is unaware of the structure 
imposed by modularisation, and thus fails. 
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